3-9-3 バイオディーゼルとの混合による木質バイオオイルの改質
およびエンジン試験
(東京工業大学) 陈力浩、李先峰、吉川邦夫

Modification of the Woody Bio-oil Blended with Biodiesel and Engine Test

OLiha CHEN, Sunbong LEE, Kunio YOSHIKAWA(Tokyo Institute of Technology)

SUMMARY
This research was carried out aiming at the usage of the woody bio-oil in a diesel engine with a simple fuel upgrading. The bio-oil was produced by the pyrolysis of Japanese cedar. High viscosity and high water content make it difficult to be used in engines. To overcome these problems, a method of blending bio-oil with biodiesel was investigated. To evaluate the quality of mixed fuels, a small single cylinder diesel engine (direct injection) was operated by using the upgraded bio-oil based on the EPA standard test mode.

[1] 掌言
石油資源は40年以内に枯渇してしまうと予測されている。バイオバイスに由来する液体燃料のバイオオイルは代替燃料の一つである。しかし、バイオオイルは、多種の熱分解生成物からなる複雑な組成を持つため性状が不安定である。また、含水率や酸素含有率が高く、低発熱量、高粘度などの特殊な性状を有することから、その用途は限定される。近年、様々な改質方法が検討されているが、現在我々では高コストであるため実用化は困難である。最も低コストである改質方法はバイオディーゼルとの混合による燃料化である。これまでの研究では、混合時の温度の影響についてほとんど検討されていない。そこで、本研究では、加熱下でバイオオイルとバイオディーゼルを混合し、エンジン試験で混合燃料の性能を検証した。

[2] 実験
本研究では、バイオオイルとバイオディーゼルの混合時間、混合温度、添加剤（メタノール）の割合、混合比、攪拌速度の最適な条件の検討を行った（表1）。

<table>
<thead>
<tr>
<th>項目</th>
<th>数値</th>
</tr>
</thead>
<tbody>
<tr>
<td>温度</td>
<td>24℃, 40℃, 50℃</td>
</tr>
<tr>
<td>時間</td>
<td>5h, 10h, 15h, 20h, 25h, 30h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>添加剤の割合</th>
<th>0%, 5%, 10%, 30%, 40%, 50%, 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>バイオオイルの割合</td>
<td>10%, 30%, 50%</td>
</tr>
<tr>
<td>攪拌速度</td>
<td>0,750rpm, 1000rpm, 1250rpm</td>
</tr>
</tbody>
</table>

最適条件で得られた燃料はエンジンでの燃焼試験に用いた。エンジンでの燃焼試験はEPAモードに基づいて実施した。

[3] 結果と考察
3-1 混合実験
混合実験においては、攪拌を停止した後、分層現象が観察された。その上層溶液は粘度と含水量が低く、燃料として利用可能である。攪拌時間の長いほどその上層溶液の生成量は多くなった。24℃の条件において、25℃時間以内の攪拌で、上層溶液の生成量は最大値に達した。40℃と50℃の条件において、20℃時間以内の攪拌で上層溶液の生成量は最大値に達し、24℃の生成量よりも多いことがわかった。

40℃と50℃においては、バイオオイルとバイオディーゼルの混合比は結果に影響を与えたが、上層溶液の生成量、性状に大きな差異がなく、攪拌速度も大きな影響を与えないことから、40℃、750rpmで、各混合比で得られた上層溶液をエンジン試験に用いた。

また、5%のメタノールを添加剤として加えた結果、上層溶液の生成量は10%～15%増加した。
3-2 エンジン実験

表2に示す性状分析では、各混合燃料には大きな違いは見られなかった。

表2 混合燃料の特性

<table>
<thead>
<tr>
<th>混合比</th>
<th>5:5</th>
<th>3:7</th>
<th>1:9</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(%)</td>
<td>73.9</td>
<td>74.15</td>
<td>75.57</td>
</tr>
<tr>
<td>H(%)</td>
<td>11</td>
<td>11.4</td>
<td>12.05</td>
</tr>
<tr>
<td>N(%)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>O(%)</td>
<td>14.84</td>
<td>14.21</td>
<td>13.01</td>
</tr>
<tr>
<td>S(mg/kg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>含水率(%)</td>
<td>2.82</td>
<td>2.53</td>
<td>1.77</td>
</tr>
<tr>
<td>灰分(%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>密度(ρg/cm³)</td>
<td>0.939</td>
<td>0.901</td>
<td>0.873</td>
</tr>
<tr>
<td>粘度(mm²/s@40℃)</td>
<td>4.82</td>
<td>4.51</td>
<td>3.91</td>
</tr>
</tbody>
</table>

本研究では、EPAモードに基づいて、単気筒直噴ディーゼルエンジンを用いて、混合燃料の燃焼性能を調査した。表3にはエンジンのパラメータを示し、表4にはEPAモードのパラメータを示した。

表3 エンジンのパラメータ

<table>
<thead>
<tr>
<th>項目</th>
<th>数値</th>
</tr>
</thead>
<tbody>
<tr>
<td>ボア×ストローク</td>
<td>70mm×57mm</td>
</tr>
<tr>
<td>壓縮比</td>
<td>20.6</td>
</tr>
<tr>
<td>定格出力</td>
<td>3kW/3600rpm</td>
</tr>
<tr>
<td>噴射圧力</td>
<td>20MPa</td>
</tr>
<tr>
<td>噴射時期</td>
<td>17.5±0.5 deg. BTDC</td>
</tr>
<tr>
<td>噴射孔の数</td>
<td>4</td>
</tr>
<tr>
<td>噴射孔の直径</td>
<td>0.22mm</td>
</tr>
</tbody>
</table>

表4 EPAモード

<table>
<thead>
<tr>
<th>モード</th>
<th>エンジン速度</th>
<th>負荷</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl−8モード</td>
<td>150</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>175</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>100%</td>
</tr>
<tr>
<td>D2−5モード</td>
<td>150</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>175</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>260</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>275</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>100%</td>
</tr>
</tbody>
</table>

C1−8 モードは非道路車両エンジン用、D2−5 モードは道路車両エンジン用である。

実験の結果、混合比5:5（バイオオイル：バイオディーゼル）の燃料では、1100、1500の条件下で、高濃度の排気の排出が見られた。図1に示すように、一酸化炭素の排出量でも同様な傾向があった。混合したバイオオイルの割合が多いほど、排気および一酸化炭素の排出量が多いことがわかる。

以上より、バイオオイルの割合が高すぎると、不完全燃焼を引き起こしていることが示された。

図1 COの排出量

図2 NOxの排出量

一方で、図2より、バイオオイルの割合を増やすと、窒素酸化物は僅かな減少傾向を示すことがわかる。結果的に、バイオオイルの割合が30%の混合燃料は、エンジンの燃焼トルク・窒素酸化物・一酸化炭素の排出量を低く維持することができる、EPAの基準値に近い値が示された。しかし、8時間の連続運転では、30%の混合燃料の燃焼は不安定であり、燃料供給ラインの閉塞が生じた。

4 結言

バイオディーゼルとバイオオイルの混合時間、混合温度、添加剤の割合、混合比を最適化することによって、安定性が高く、粘度の低い燃料が得られていた。得られた燃料でディーゼルエンジンでの燃料試験を実施した結果、バイオオイルの混合比が30%までは、ディーゼル油とほぼ同等な燃焼特性が得られることがわかった。しかし、8時間の連続燃焼試験では、燃焼が不安定となり、燃料供給ラインの閉塞が生じた。