3-13-4 下水汚泥バイオマスからの水素生成プロセスの開発

（東北大・多元研）○石原真吾，加納純也，（大和三光製作所）登家章司

Development of a Hydrogen Production Process from Sewage Sludge Biomass

○Shingo ISHIHARA, Junya KANO (IMRAM, Tohoku University),
Shoji NOBORIYA (Yamato Sanko MFG Co., Ltd.)

SUMMARY
The new approach to produce hydrogen from sewage sludge biomass is proposed in this work. It is known that hydrogen generation occurs with heating the mixed sample of sewage sludge with additives of hydroxide nickel and calcium. Here, detailed experiments with various added amounts of both hydroxides have been conducted and hydrogen yields have been obtained. As a result, with both raw and dried sewage sludge samples, at less addition of nickel hydroxide, hydrogen yields increase with the less addition of calcium hydroxide. These results suggesting it is possible to produce hydrogen at relatively low cost by decreasing addition of both hydroxides.

[1] 緒言
近年の二酸化炭素排出量増加による地球温暖化や、化石燃料資源の枯渇といった環境問題を背景に、クリーンエネルギーとしての水素が注目されている。平成26年4月に発表されたエネルギー基本計画においても、水素社会の実現に向けた取り組みが加速することが明記されている。水素をエネルギーとして利用した場合、発生するのは水のみであるため、環境保全に貢献しているが、水素を製造するための原料はほとんどが天然ガスなどの化石燃料であり、製造段階において二酸化炭素を排出していることになる。化石燃料に頼らない水素製造プロセスのためには、大量に存在し、かつカーボンニュートラルであるバイオマスをエネルギー源として利用することが考えられる。特に、既存のインフラ設備によって必然的に集積される下水汚泥の利用が有望である。下水汚泥から水素を製造する方法として、嫌気性発酵による発酵ガスを生成し、それを水蒸気改質・水素ガス洗浄反応による方法や超臨界水を用いる方法が提案されている。著者らは、さまざまな廃棄物から水素を製造するプロセスを開発してきており、これまで逆応応機の解明と高純度水素製造のため、大量の水酸化カルシウムを混合していた。
ここでは、下水汚泥に混合する水酸化カルシウムならびに水酸化ニッケルの量が水素生成に及ぼす影響について検討した。

[2] 実験
実験で使用した下水汚泥は、弘前市から提供されたものであり、それを乾燥させたものを試料として使用した。脱水汚泥の含水率は、75.1%であり、乾燥汚泥の化学組成は、炭素:44.62%、水素:6.69%、窒素:4.80%、酸素:30.80%、硫黄:0.49%であった。
C:Ca:Niのモル比を調整し、乾燥汚泥に水酸化カルシウム(Ca(OH)2)、水酸化ニッケル(Ni(OH)2)を混合した。混合には、道具ミル(Fritsch、P-7、Germany)を用い、ミル回転速度700rpmで30分間行った。この混合物を石英管に充填し、Au霧囲気下で水を0.05ml/10secの速度で滴下しながら、昇温速度50℃/minで加熱し、600℃で1時間保持、発生したガスをGCにより分析した。また、加熱前後の試料評価はXRDならびにTG-MSにより行った。

[3] 結果と考察
モル比6の水酸化カルシウムと0.1の水酸化ニッケルの混合した試料をTG-MS分析し、その結果をFig.1に示す。水素発生温度が300〜600℃であることが確認できる。また、乾燥汚泥にCa(OH)2、Ni(OH)2の混合量をかえても、水素発生温度範囲は大きく変化しないことを確認した。
Fig.2に水酸化カルシウムならびに水酸化ニッケルの混合量が水素発生量に及ぼす影響を示す。いずれの水酸化カルシウムの混合量においても、水酸化
ニッケルの混合量を0から0.1、1molと増加させると、水素発生量も増加する。また、水酸化ニッケルを入れない0molの場合は、水酸化カルシウムの混合比を増加させると水素発生量は単調に増加する。一方、水酸化ニッケルを0.1molと1mol混合したときは、水酸化カルシウムがそれぞれ1mol、3molで水素の発生量が最大になり、水酸化ニッケルの混合量に対して、最適な水酸化カルシウムの混合量が存在することがわかった。

![Fig.1 MS spectra from TG-MS analysis of the mixed sample with 0.1 Ni(OH)2 and 6 Ca(OH)2](image1)

Fig.1 MS spectra from TG-MS analysis of the mixed sample with 0.1 Ni(OH)2 and 6 Ca(OH)2

![Fig. 2 Hydrogen yields with various additions of Ca(OH)2 and Ni(OH)2](image2)

Fig. 2 Hydrogen yields with various additions of Ca(OH)2 and Ni(OH)2

![Fig.3 XRD patterns of the solid residues after heating the mixture of 0.1 mol Ni(OH)2](image3)

Fig. 3 XRD patterns of the solid residues after heating the mixture of 0.1 mol Ni(OH)2

4 結言
水酸化カルシウム、水酸化ニッケルを下水汚泥に混合し、加熱することにより簡単に水素を製造することができる。水酸化ニッケルの混合量が増加すると水素発生量も増加することがわかった。また、水素の発生量を最大にする水酸化カルシウムの混合量が存在することがわかった。

【引用文献】
1）経済産業省、エネルギー基本計画、2014年4月
2）J. J. Roem et al., 水素は石炭に代わるか、17（2005）
3）NEDO、燃料電池・水素技術開発ロードマップ2008策定について、2008年6月
4）張 其武、齋藤文良、ケミカルエンジニアリング、No10, pp48-63 (2012)

【謝辞】
本研究の一部は、独立行政法人新エネルギー・産業技術開発機構（NEDO）の委託業務として行われ、下水汚泥は弘前市より提供いただいた。ここに記して謝意を表する。