The Change of Vegetation, Fauna of Frogs and Mousse as Small Animals, on Different Management Level in Step-like Paddy Fields

Satoshi OSAWA
Takekatsu KURODA
Takehiko KATSUNO

Abstract: The changes in vegetation and small animal fauna were investigated in terraced paddy with stone masonry in the hilly and mountainous areas of northeast Kyushu where cultivation has been progressively abandoned. Grassland which includes Imperata cylindrical - Miscanthus sinensis community and Juncus effusus community was formed depending on the soil moisture in the extensively managed sites. With the progression of vegetation succession in the abandoned managed sites, the M. sinensis community has attained dominant status. Although frog species diversity increased in the mountainside terraced paddy, the abandonment of paddy field cultivation led to a decline of frog composition. Rana ornativentris and Rhabacophorus schlegelii had continually inhabited the moorland vegetation since the open water bodies required for breeding in frogs were disturbance-created by the rooting behaviour of mammals. With regard to the mouse fauna, Apodemus speciosus has colonized the extensively managed sites, and A. argenteus was found in the abandoned sites characterized by dense coverage of tall plants such as M. sinensis. Though the Microtus minutus population had increased in the extensively managed sites subject to continued mowing, they were absent from sites that had been abandoned for approximately 15 years. It was clarified that the vegetation succession is dependent on both land-form and management practice, and that vegetation and soil moisture are important factors in determining small animal fauna.

Keywords: Step-like paddy fields, ecological succession, frog, mouse, extensive management

キーワード: 棚田, 生態遷移, カエル類, ネズミ類, 置放管理
表-1 調査地点の概要

<table>
<thead>
<tr>
<th>地点</th>
<th>利用区分</th>
<th>地形</th>
<th>方位・勾配</th>
<th>標高</th>
<th>規模</th>
<th>管理内容</th>
<th>休耕年</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>稲田水田</td>
<td>微傾斜</td>
<td>E 1/1.75</td>
<td>340-380m</td>
<td>1.22ha</td>
<td>水田耕作後耕</td>
<td>2005年</td>
<td>前年に耕作されている石積の棚田</td>
</tr>
<tr>
<td>B</td>
<td>稲田水田</td>
<td>微傾斜</td>
<td>W 1/3.23</td>
<td>370-400m</td>
<td>0.62ha</td>
<td>休耕水田</td>
<td>2005年</td>
<td>前年に耕作されている石積の棚田</td>
</tr>
<tr>
<td>C</td>
<td>稲田水田</td>
<td>微傾斜</td>
<td>NW 1/3.25</td>
<td>370-390m</td>
<td>0.24ha</td>
<td>石積の棚田</td>
<td>2005年</td>
<td>前年に耕作されている石積の棚田</td>
</tr>
<tr>
<td>D</td>
<td>放牧利用地</td>
<td>微傾斜</td>
<td>N 1/3.25</td>
<td>350-370m</td>
<td>0.35ha</td>
<td>牛の放牧（1999年〜）</td>
<td>1990年</td>
<td>石積の棚田形状が現存</td>
</tr>
<tr>
<td>E</td>
<td>維生管理地</td>
<td>微傾斜</td>
<td>W 1/2.5</td>
<td>370-380m</td>
<td>0.20ha</td>
<td>年2回草刈り（2000年〜）</td>
<td>1994年</td>
<td>石積の棚田形状が現存</td>
</tr>
<tr>
<td>F</td>
<td>維生管理地</td>
<td>微傾斜</td>
<td>W 1/6.5</td>
<td>350-370m</td>
<td>0.48ha</td>
<td>年2回草刈り（2000年〜）</td>
<td>1993年</td>
<td>湿地状態においてススキの植生が現存</td>
</tr>
<tr>
<td>G</td>
<td>維生管理地</td>
<td>微傾斜</td>
<td>NE 1/3.25</td>
<td>410-430m</td>
<td>1.20ha</td>
<td>無管理</td>
<td>1990年</td>
<td>石積の棚田形状が現存</td>
</tr>
<tr>
<td>H</td>
<td>クス栽培地</td>
<td>微傾斜</td>
<td>N 1/10</td>
<td>470-480m</td>
<td>0.28ha</td>
<td>無管理</td>
<td>1988年</td>
<td>湿地状態においてクス栽培</td>
</tr>
</tbody>
</table>

勾配・標高・規模は1/2500地形図より算出。C区は前年まで耕作されてきたが、2005年は耕作者による休耕で休耕。

図-1 調査地の位置

3. 結果

3.1 植生

水田あるいは放牧利用地として稲田景観が維持されている地点について見ると（表2）、耕作される稲田（地点A）には、春にススキノツネツカポウ、レンゲウ、ノミフウサなどの優占するノミフウサ・ケツネツカポウ群落が成立している。2005年に休耕された棚田（地点C）では、水田水田の縁辺に見られる耕作用の溝には流水が生じているものの、水田水田にかかわらずススキ、コナガサ、ヘンサバなどの雑草が現存した。放牧地（地点D）では、ノサシ、コバナンシショウバイ、アメリカススキノハノヒ等が優占する低次の芝生状態を維持していた。

放牧利用地では（表3）、地形が明脚状（地点E）は主にチガヤ、ススキが優占する中高1m程度の乾燥

表-2 耕作・休耕水田・放牧地の植生

<table>
<thead>
<tr>
<th>地点</th>
<th>耕作水田</th>
<th>休耕水田</th>
<th>放牧地</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>稲田水田</td>
<td>微傾斜</td>
<td>E 1/1.75</td>
</tr>
<tr>
<td>B</td>
<td>稲田水田</td>
<td>微傾斜</td>
<td>W 1/3.23</td>
</tr>
<tr>
<td>C</td>
<td>稲田水田</td>
<td>微傾斜</td>
<td>NW 1/3.25</td>
</tr>
<tr>
<td>D</td>
<td>放牧利用地</td>
<td>微傾斜</td>
<td>N 1/3.25</td>
</tr>
<tr>
<td>E</td>
<td>維生管理地</td>
<td>微傾斜</td>
<td>W 1/2.5</td>
</tr>
<tr>
<td>F</td>
<td>維生管理地</td>
<td>微傾斜</td>
<td>W 1/6.5</td>
</tr>
<tr>
<td>G</td>
<td>維生管理地</td>
<td>微傾斜</td>
<td>NE 1/3.25</td>
</tr>
<tr>
<td>H</td>
<td>クス栽培地</td>
<td>微傾斜</td>
<td>N 1/10</td>
</tr>
</tbody>
</table>

分布・種数

<table>
<thead>
<tr>
<th>記者年</th>
<th>分布</th>
<th>種数</th>
<th>休耕水田</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004年</td>
<td>65種</td>
<td>314種</td>
<td>2005年</td>
</tr>
</tbody>
</table>

記者状態

<table>
<thead>
<tr>
<th>地形</th>
<th>記者状態</th>
<th>種数</th>
</tr>
</thead>
<tbody>
<tr>
<td>水田</td>
<td>45種</td>
<td>2005年</td>
</tr>
</tbody>
</table>

3.2 総合

水田あるいは放牧利用地として稲田景観が維持されている地点について見ると（表2）、耕作される稲田（地点A）には、春にススキノツネツカポウ、レンゲウ、ノミフウサなどの優占するノミフウサ・ケツネツカポウ群落が成立している。2005年に休耕された棚田（地点C）では、水田水田の縁辺に見られる耕作用の溝には流水が生じているものの、水田水田にかかわらずススキ、コナガサ、ヘンサバなどの雑草が現存した。放牧地（地点D）では、ノサシ、コバナンシショウバイ、アメリカススキノハノヒ等が優占する低次の芝生状態を維持していた。

放牧利用地では（表3）、地形が明脚状（地点E）は主にチガヤ、ススキが優占する中高1m程度の乾燥

結論

3.3 結論

水田あるいは放牧利用地として稲田景観が維持されている地点について見ると（表2）、耕作される稲田（地点A）には、春にススキノツネツカポウ、レンゲウ、ノミフウサなどの優占するノミフウサ・ケツネツカポウ群落が成立している。2005年に休耕された棚田（地点C）では、水田水田の縁辺に見られる耕作用の溝には流水が生じているものの、水田水田にかかわらずススキ、コナガサ、ヘンサバなどの雑草が現存した。放牧地（地点D）では、ノサシ、コバナンシショウバイ、アメリカススキノハノヒ等が優占する低次の芝生状態を維持していた。

放牧利用地では（表3）、地形が明脚状（地点E）は主にチガヤ、ススキが優占する中高1m程度の乾燥

総合

3.3 結論

水田あるいは放牧利用地として稲田景観が維持されている地点について見ると（表2）、耕作される稲田（地点A）には、春にススキノツネツカポウ、レンゲウ、ノミフウサなどの優占するノミフウサ・ケツネツカポウ群落が成立している。2005年に休耕された棚田（地点C）では、水田水田の縁辺に見られる耕作用の溝には流水が生じているものの、水田水田にかかわらずススキ、コナガサ、ヘンサバなどの雑草が現存した。放牧地（地点D）では、ノサシ、コバナンシショウバイ、アメリカススキノハノヒ等が優占する低次の芝生状態を維持していた。

放牧利用地では（表3）、地形が明脚状（地点E）は主にチガヤ、ススキが優占する中高1m程度の乾燥
管所も認められた。特に過湿地でヌタ耕作が著しい区画には、
コウサイゼキショウ、コナギ、クロウモイ等の水田雑草群が形
成されていた。また、農道付近や土堤のやや低いた部分にはチ
ガヤ、セイタカワグチソウ、ススキ等からなるチガヤ・ススキ群
落が成立していた。

管理放棄地（地点G）では、多くはススキが優占する中、セイ
タカワグチソウが混生し、ヘリオソウ、イヌソウ等のツル
植物他、地表付近ではクサイナガ、チシミザサの常在性が高く
なった。小規模では、部分的にウツギ、ネザサ、オギ、ヨシがそ
のぞく優占する場所も見られたが、組成的には周囲のススキ草原
と大きな相違は見られなかった。ここでも小規模ではあるが水み
ち部分に湿生草群が成立し、半日陰地ではヘリオシボウ、ヌタ

表3 粗放管理地・管理放棄地の植物

<table>
<thead>
<tr>
<th>地点</th>
<th>粗放管理地</th>
<th>地点F</th>
<th>地点G</th>
<th>地点H</th>
</tr>
</thead>
<tbody>
<tr>
<td>管理放棄地</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104.8±0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td>高温</td>
<td>高温</td>
<td>高温</td>
<td>高温</td>
</tr>
<tr>
<td>高温</td>
<td>高温</td>
<td>高温</td>
<td>高温</td>
<td>高温</td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>微湿</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中温</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
（4）植生と小動物の関係

管理形態による植生の状況と小動物の種数の関係をみたのが表6である（植生調査を実施していない地点Bは省略した）。植生の管理形態として1年生の種数割合を今回用いた。一般に2年目の初期で、1年生の種数割合の減少が観察される傾向にあるため、集中調査時の該当地点の確認が必要である。

まず管理調査にいう生物群の低下的低い伴い、大傾向として成立し、観察2生調査が最も低下した。特にG区においても1年生割合は著しく少なく、植生の変化の進行が示唆される。これらに対応し小動物群も変化したが、水分条件による生物群でその傾向は異なった。さらに、卵が観察された種も含まれると混在群の比較的低生境で、カルデラ類で植生調査時と同程度の種数が、ネズミ類2種も加わり、生物群の種数合計は最大となった。

4. 考察

九州北東部の山間の地域での事例調査であるが、カルデラ林における管理形態の変更に伴う植生およびカルデラ相。ネズミ類の実態が把握された（図3）。各管理調査の調査区が1トンネル群とは一部異なるものの中、植生の変化は常に生長期を示す11）等に対応し集団的な植生変化を示す。また小動物類での変化をもを主な因子とすることにより本調査が十分考えられる。一方、1トンネル区の内、より生産地での調査区ごとでの比較的高い生産区を示すので、地勢・気候の変化は分布域の変化から影響は低い。地域の変化を示すのが、立地および管理条件の違いに伴うのである。
まず、通常の耕作管理である棚田（地点A・B）では、山側に傾く溝が設けられていなくても水田面は非灌水期には乾燥状態である。ノミノスマケキサニガケポタ群が成立していた。これらは、本地区の水深が浅いためにして、棚田を設ける山側に形成される傾斜を利用して、これらの種が適応度の高い場所を占めているものと考えられる。特にノミスカケガエルの卵も水田の有無にあまり影響を受けず、土壌の乾燥状態や植物の種類の選択により卵の分布が制限される。また、棚田の形状は比較的自由であり、種々の形態のものが共存していた。このため、異なる成長環境下で、ノミノスマケキサニガケポタの種の混在が見られる。さらに、棚田の形状を考慮すると、ノミノスカケガエルの卵は棚田の形状によっても影響を受けることが考えられる。ノミスカケガエルとノミノスマケキサニガケポタの間には、生態学的競合が見られることが予想される。ノミノスマケキサニガケポタの活動は、ノミスカケガエルの活動により制限されることが示唆されている。

図3では、石積棚田における管理形態の変化により、棚田の形状が大きく影響を受けることが示されている。棚田の形状は、灌水期や非灌水期に大きく変化し、その変化が種の分布に影響を及ぼす。特にノミノスマケキサニガケポタの幼虫の生存に影響を与えることが示されている。これにより、灌水期の管理が重要であることが示されている。

一方、放牧（棚田の耕作）は、ノミスカケガエルの卵の数を増加させる効果があることが示されている。放牧は、灌水期の管理の代わりに、卵の数を増加させる効果がある。また、放牧による灌水期の管理は、ノミスカケガエルの卵の数を増加させる効果がある。したがって、放牧は、ノミスカケガエルの卵の数を増加させる効果があることが示されている。

最後に、ノミスカケガエルの卵の孵化に影響を与えると考えられる管理形態について考察する。ノミスカケガエルの卵の孵化に影響を与えると考えられる管理形態は、灌水期の管理の代わりに、卵の数を増加させる効果があることが示されている。放牧は、卵の数を増加させる効果がある。したがって、放牧は、卵の数を増加させる効果があることが示されている。