露出セメント板と緑化パネル設置部分との表面温度と
近傍気温の差異

Difference of Surface Temperature and Temperature of a Neighborhood on Wall of Cement and Wall Greening

渉井 史郎* 油井 正昭** 糸島健太郎***
Shiro WAKUI Masakii YUI Kentaro IIJIMA

Abstract: The aim of this study was to examine mitigating effects of heat environment by wall greenery. An enforcement place of a experiment was the wall of a penthouse on the roof floor of a university building located in Aoba Ward of the city of Yokohama. Lawn grass was planted onto about half area of the wall (height 3500 mm width 3600 mm). Then the thermal sensors were installed in a lattice-like pattern in order to measure surface temperatures of the planted and non-planted surfaces, and temperature distribution 15 cm in front of those surfaces. A change of 24-hours of temperature distribution in a summer day was recorded and analyzed. No difference in temperatures of the planted and non-planted surfaces of the wall could be observed before dawn, and no significant difference was also shown from morning till early afternoon. Both surface temperatures gradually decreased from evening till night, with those of the planted surface continuously being kept lower than those of the non-planted. In conclusion, wall greenery is effective for the air temperature modification caused by the plant transpiration, in addition to suppression of heat accumulation.

Keywords: wall greening, thermal environment, aitemperature moderation, temperature distribution

1. 研究目的
都市の建物の熱環境緩和策としては地面被覆の改善が有効な手法の一つであり、密集街並みの大半を占めている建築物の緑化を推進することが不可欠と考えられる。屋上緑化と共によいサイト緑化による温熱環境改善効果の検証に関する研究が行なわれ、緑化面と非緑化面の表面温度差 ([1] [2] [3])、流体の流動が影響する (14) 15) もまたそのプロセスとしての植物の蒸散量の関係 (16) も明らかにされており、その多くは建築構造物に対する断熱性能に関する研究を解析している。
一方、壁面緑化による建物の外部空間に対する放射環境からみた改善効果を中心にした調査研究 (17) [18] [19] は、それぞれの測定精度を高めることの研究の課題の課題となっている。一方、2006年・地球温暖化バイオモニタリング (20) は、暑熱環境改善効果を検証するための一実験装置においても位置づけられ、緑化壁面に比較し最大7℃温熱を低くしている効果など報告されている (21)。
なお暑熱環境緩和効果については、日中のピーク時のみならず24時間中の推移も重要要素であり、またポイントではなく熱画像などと同様にその面的な気温分布の推移も影響する上での必要である。
そこで本研究では、緑化ユニット型の壁面緑化を対象として、その暑熱環境緩和効果に対して面的な近傍気温と表面温度の分布を24時間の変化から比較検討することにより効果を把握することを目的とした。

2. 実験内容と方法
（1）試験条件実験条件の設定
実験は、横浜市青葉区大学研究施設屋根の北向き南面の壁面を対象として行なった。対象壁面は、高さ3500mm、幅3600mm、外部の構造材料はコンクリートパネル（C510・C種）であり、色彩は白色である。この壁面の右側を緑化対象とした。緑化面は緑化ユニットの規格の合計、1920×2555mmに設定した。そのため緑化面の下部600mm、上部350mmは壁面が露出している（図-1）。また実験対象の壁面がある環境条件としては、前面の地表面はコンクリートの打設しかが、壁面から300mm手前で400mmの植栽枠が設置されており、灌木を密に植栽することにより対象とする壁面への放射の直射の影響を低減するように配慮した。

（2）緑化ユニットと設置方法
緑化ユニットは、単体ボックス内（120×480×130mm）に植
用地としてポラ土が充填され、植物生長および不織布を伴っている。これにゾイサ（Zoysia japonica）の葉が植えられた状態の植材を（図-2）、2006年6月28日に対象壁面にヒス止めにより固定した（図-3）。緑化ユニットは緩線型配置とし、横4列、2段の配置とした。
なお先に述べたバイオモニタリングは総緑化面積3500m2であり、これらのうち3600m2はスクリーン状の緑化で1152枚の緑化パネルで構成されている。緑化パネルのうち70m2が芝生を用いたターフ状の緑化面を形成していた。本研究において、この芝生を用いた緑化パネルを想定した。この観点の設置手法により緑化ユニッ

（3）センサーの設置位置と計測方法
緑化面と非緑化面の表面温度とその近傍気温の分布状況を比較
することができます。温度センサーを次のように設置しました。まず非緑化部

*柳原横浜大学医学工学部 Faculty of Biomedical Engineering, Toin University of Yokohama
分の接触表面は横方向1点×縦方向4点、緑化部分の接触表面は横方向2点×縦方向4点に設置した。次に各々の面から150mm程度離れた非接触の空間に非緑化面は横方向3点×縦方向4点、緑化面は横方向4点×縦方向4点に格子状に設置した（図-4）。

温度センサーは熱電対式を採用し、エスペック製サーモレコーダーワイヤレスRSM-10（図-5）、テフロン被覆センサー（図-6）を用いた。接触表面温度計測のための固定は熱電対部分を外壁表面、緑化ユニット面に覆われているテフロンの面の表面にテープ止めした。近傍気温計測についてはセンサー部分への直射光の影響を極力軽減するためにアルミホイル製のカサを被せる構造とした（図-7）。なおサーモレコーダー本体は防水仕様のため、ペントハウス上部に固定した防水収納ボックス内に設置収容した。

計測メモリーは夜毎にわたって5分毎に設定し、同年8月10日より開始し、9月9日までの1ヶ月間継続的に計測した。

（4）対象地域の気象概況
非緑化面と緑化面の表面温度ならびに近傍気温の24時間の変化をデータ分析する対象日としては、計測期間中で終日天候が安定、かつ一日を通じて風速が小さい日を選定し、同年8月29日とした。対象地域の気象の概況を表-1に示した。当日は、日中の最高気温は23℃、日中最高時の気温は29.7℃となり、真夏とはならなかった。湿度は未明までは80%前後を記録していたが、日中は16:00にかけて40℃台まで低下、夕方以降は60%台となっていた。風向は概ね未明までは北より、午後から夜間にかけては南よりの風となり、午前に比較して午後の風速がやや高めを記録した。
3．計測結果
（1）非緑化面及び緑化面における表面温度の日変化概況
非緑化面（4点）、緑化面（8点）の表面に設置したセンサーの
各々について、各時刻の60分間中5分毎に記録したデータの
平均値を24時間推移で示したのが図－8である。
非緑化面、緑化面の表面温度は、1:00から6:00にかけては22
℃～24℃付近を推移していたが、概ね緑化面の方が1℃前後高かっ
た。いずれも7:00には24℃付近となり、8:00には緑化面はその
まま24℃台であったが、非緑化面では28℃前後まで上昇し、
その後、非緑化面では、9:00に30℃台、10:00から16:00には40
℃以上となり、とりわけ12:00から13:00は約50℃と記録した。
緑化面では9:00から11:00は25～26℃台となり、その後わず
かに上昇し、16:00までに28～30℃付近となったが、30℃を超え
ることなくした。
夕方以降については、17:00には非緑化面は34℃、緑化面は28
℃、18:00には非緑化面は35℃、緑化面は27℃となり、緑化面
で低く推移したが、19:00には非緑化面と緑化面の差が無くなり
全体に26℃となった。20:00から24:00には、非緑化面で23～25
℃、緑化面では24～26℃となり、非緑化面の方が低く推移した。
以上のように、非緑化面は日中最高時に50℃近くに達し、少な
くとも7時間は40℃以上、9時間は30℃以上を記録した。夜間7
時間は25℃を下回っていた。
緑化面では、日中最高時にも30℃に届いておらず、日中は25
～28℃付近を推移した。夜間も25℃付近を推移し、そのうち10
時間は非緑化面の表面温度の方が下回っていた。
（2）非緑化面及び緑化面における近傍気温変化の概況
非緑化面（12点）、緑化面（16点）の近傍に設置したセンサー
の各々について、各時刻の60分間中5分毎に記録したデータの
平均値を24時間推移で示したのが図－9である。
非緑化面ならびに緑化面の各々の近傍気温推移は同様の傾向を
示しており、日中の最高気温はおよそ35℃に達していた。
上昇が先立ち、それに追随して非緑化面が暖められいく傾向を示しながら、35℃付近に達した。

なおこの時間帯は、前述のとおり非緑化面の表面温度は20℃以上の急速な上昇を示す一方、緑化面の表面温度は数値程度の上昇となり、緑化面の方が低い温度で推移している。つまり非緑化面と緑化面の近傍気温の推移の特徴は、その時の各々の表面温度とは別の要因による影響を受けていると考えられる。

12:00から13:00は、非緑化面、緑化面とともに35℃前後を記録したが、わずかに緑化面の気温が低く推移した。

13:00以降19:00にかけての時間帯は、非緑化面、緑化面とともに早朝気温が低下し25℃付近に達した。このとき、緑化面の気温低下が先立ち、それに追随して非緑化面の気温が低下する傾向を示した。

20:00以降については、緑化面、非緑化面の気温差はわずかとななり、同様に推移しながら23℃付近まで低下を示した。

2）非緑化面及び緑化面の表面温度ならびに近傍気温の平面分布の推移

表面温度については非緑化面4点、緑化面8点、気温については非緑化面12点、緑化面16点に設置した各々のセンサー部位について、60分毎に5分間隔で記録したデータの平均値を平面的に表現することを試み、表面温度と近傍気温の分布状況を示した。

その結果、10:00から6:00にかけての時間帯（深遠から明け方）は、非緑化面、緑化面共に表面温度と近傍の気温は、ほぼ全面にわたって同様の分布で推移を示した。

次いで7:00から17:00にかけての日中時間帯は、非緑化面、緑化面共に表面温度はほぼ全面にわたって同様の分布で推移した。しかし近傍の気温の値は非緑化面、緑化面共にバラツキが目立ち特徴を見出すには至らなかったが、13:00から14:00付近では、非緑化面に比較して緑化面の方が低い気温分布が認められた。

一方、17:00以降24:00までの時間帯は、非緑化面及び緑化面の表面温度ならびに近傍気温の平面分布の推移に特徴的な変化が認められたので以下に詳述する（図-10）。

表面温度については、17:00に非緑化面は約34℃、緑化面は27～29℃、18:00には非緑化面は約29℃、緑化面は約27℃となり、緑化面で低く推移したが、19:00には非緑化面と緑化面の差が無くなり全体に約26℃となった。20:00から24:00には、非緑化面で23～25℃、緑化面では24～26℃となり、非緑化面の方が低く推移した。

近傍気温の面推移については次のとおりである。17:00には、非緑化面29～30℃、緑化面では約26℃、18:00には非緑化面約27℃、緑化面約26℃であり、非緑化面よりも緑化面の方が全面にわたって低く推移し、気温低下効果が認められた。この時間は給水直後の時間とともに一致している。

19:00には、非緑化面、緑化面のほぼ全面にわたって25℃台の分布となった。

20:00には緑化面は24℃台に低下したが、非緑化面は25℃前後の分布が占めていた。次いで21:00には非緑化面、緑化面共に全面にわたって24℃台となった。

22:00から23:00には、主として緑化面で23℃台に低下し、24:00には非緑化面、緑化面共にほぼ全面にわたって23℃となっした。

なお図-10中に、最も低い気温分布域の0.1℃刻みの等温線を加えて表現した結果、19:00から24:00にかけて、いずれも緑化面の中央や下部に最も低い気温域が認められ、その位置を中心に上下左右に気温の低下が広がっているような分布状況が認められた。またその部位の気温の低下に追随して周辺の気温が低下しているかのような時間的変化が認められた。
図－10 17:00～24:00 の非緑化面と緑化面の表面温度とその近傍気温の分布変化
4. 考察
（1）非緑化面及び緑化面における表面温度の日変化概況
非緑化面と緑化面の表面温度の24時間推移を比較すると、まず緑化面では目中の中毎時にも30℃に達しながらも、非緑化面では15℃にわたって30℃以上を記録した。また非緑化面においては昼間がたった25℃を超える日変動を示したが、緑化面では5℃以内の変動に留まっており、段階面においての安定性に多大な貢献が見られると推察される。

（2）非緑化面及び緑化面における近傍気温変化の概況
非緑化面及び緑化面の近傍気温の24時間推移を比較すると、ほぼ同様の変化を示しており、緑化によって目中間立地気温を下げるような効果は認められなかった。既往の研究では、巨大な規模の緑化面（愛知万博のバイオラブ）では、非緑化面に比較して最大1℃気温を低くしている効果が報告されているが、本実験の緑化規模における大きな気温低下効果は見出すには至らなかった。

緑化面と緑化面の近傍気温の推移の特徴として、午前中7:00から11:00の気温の上昇時には非緑化面に先立って緑化面に上昇していたが、今後の実験環境において発熱面からの放射反射や輝射熱の影響を調査でもできるよう、データのさらなる積算と近傍気温の計測も含めた計測精度の向上について今後の課題をとる。一方、16:00から19:00までの時間帯は非緑化面に先立って緑化面での表面温度が植物と樹木の蒸発散や発熱に応じてセメント板よりもかんらんに推移されることで、近傍気温の低下に作用したものを推察される。

（3）非緑化面及び緑化面の近傍気温の平面分布の推移
前述のような緑化面が気温低下の推進力となっている可能性については、非緑化面及び緑化面の近傍気温の平面的な分布の推移からも推測することができた。よりわけ緑化面の詳細な気温分布を見ると、緑化面の中央や下部の気温が常時最も低く推移しており、この付近から蒸発（蒸発）ならびに蒸発散熱によって冷却効果がにじみでている可能性がある。なおノミハリの生育は全体的に均一であることから、この効果についてはドリップ位置に基づく基盤中の土壤含水率の差異が影響したものと考えられる。

5. まとめ
本研究は、露出セメント板の面壁と土壌基盤を伴った壁面緑化ユニットを対象に、その表面温度ならびに近傍気温の平面分布とその時間的推移から暑熱環境緩和効果の可能性を考察した。その結果、特に、昼夜にわたって25℃を超える日変動を示す非緑化面に対して、土壤基盤を伴う緑化面では昼夜にわたって5℃以内の変動に留まり、壁面緑化が表面温度の安定性に貢献することを明らかにした。

第二に、本実験の規模である約12m2の露出セメント板に対し、その約半分の面積が壁面緑化する程度では、目中間立地近傍気温低下効果をもたらすには至らなかったことが明らかになった。

第三に、本実験の壁面緑化の構造において、時間帯にわたって緑化面中央や下部に最も気温の低いエリアが分布する特徴が認められた。こうした緑化面近傍に存在する気温の低いエリアの存在が、追尾した気温低下的プロセスとして作用しているのかを明らかにするのが今後の課題である。

謝辞：本研究は都市緑化技術開発機構ならびに農林省緑化土木研究に供した。また計測や解析については、平井健雄氏（アーキャラパ株）、石原俊雄氏（桐蔭横浜大学工学部）にご協力頂いた。記して深謝致します。

引用文献
1）梅野好雄・下山正大（1983）：ベランダ検査による照射熱へ
2）梅野好雄・下山正大（1983）：つる植物によるベランダ検査による照射熱へ
3）近藤隆雄・鈴木英彦（1983）：表面気温からみた都市植生の
4）松江正彦（2005）：壁面緑化による暑熱環境改善効果の実証：都市緑化技術（57）、17-18
5）野島義照・中村博・小林達明・江部和明・瀬戸祐直・倉山公平
6）中村博・野島義照・小林達明・瀬戸祐直（1994）：つる植物
7）鈴木弘孝・三坂章正・村野直康・田代雅子（2005）：壁面緑化
8）鈴木弘孝・三坂章正・水谷政司・田代雅子（2005）：WBGT, SETの影響
9）浦井史郎（2005）：熱・地球気候におけるバイオラブの誕生につ

412 LRJ 70 (5), 2007