A Study of the Primitive Requirement of the Agent Rule based on results of Information Access by the Officer of Watch

Kouhei HIRONO

Abstract

In the operation of the Safety Management System, it is useful to define the procedure that the point of view of the officer on duty is made clear. Because, it seems that the officer's viewpoint shows a focus of his consciousness, and it has relation to an activity that the officer is doing, or intends to do. And the composition of the activity sequence, it may be called "process", is controlled by officer’s decision base on own experiences, awareness of the situation, including rules and regulations.

However, the officer may compose inadequate activity sequence by distraction or short awareness, and so on. The Safety Management System has to be operated for the purpose of improving ship operation quality. And the SMS manual supports the officer to do duties with presentation of the standard procedures and reduces officer’s potential to misjudge. Thus, contents of the SMS manual have to be improved to suit for actual stages, continuously.

The author has developed a prototype computer agent to present procedures to the officer of watch. These procedures are stored in the agent as its rules. And it has designed to capture actions of the officer gets the information via its interface. This function records the fact of information access by the officer with situational data.

This paper presents results of the examination to verify this function and difference of accessing information between two persons (a chief mate and a cadet) during the same watch-keeping situation. As the result, the agent system is able to capture the information access. And accessing actions depend on individual. These suggest that we can extract experienced officer’s activity sequences, revise the SMS manual with referring them, and reduce the variation on duty execution by officers belong to the company.

Keywords: computer agent, information access, process management

キーワード: コンピュータエージェント，情報利用，プロセス管理

1. はじめに

筆者は、SMS (Safety Management System) の運用において、以下の問題点を指摘し、エージェントシステムによる業務支援を提案した (1) (2)。

①現行のSMS マニュアルは紙を媒体としている。一方で、SMS 業務（特に航海当直業務）は自船の状態や環境などの組合せから多様であり、SMS マニュアルにはその時々に応じた記述ができていない。

②航海状況に応じて業務作業の優先順位が変わるが、その判断は個人に依存しており、見落としが、
やりなおしなど安全性や経済性が損なわされるおそれがある。

エージェントシステムによるSMS運用業務の支援の目的は、SMSマニュアルに記載されている内容をエージェントがルールとして保持し、ルールに基づいて航海ならびに業務の状況を客観的に判断して、実施すべき作業を提示するとともに、作業促進、実際にその時実施された作業を記録すること（作業記録）により、SMSマニュアル、延いてはエージェントルールの改善のための実績データを陸上の管理者に提供することにある。

そこで、神戸商船大学附属練習船深江丸（以下、深江丸という）にエージェントシステムのプロトタイプを搭載し、基本的な作業促進と情報アクセス記録の機能の検証を実施した（1）。この情報アクセス記録機能とは、エージェントシステムが、航海に関わる情報を一元的に集約し、当直航海士による情報要求を受け付け、その内容を提示するとともに、その事実を記録するものである。当直航海士が要求する情報は、行っている、あるいは、行おうとしている業務に関連しているとの仮説に立ち、情報アクセスの記録から実施された作業の類推が可能であると考えている。

エージェントシステムが提供する情報の種類を拡充し、深江丸の実戦航を通じて一等航海士と航海科学部学生によるアクセス状況の違いを把握することができた。このことから、いわゆるペタラブの航海士の意識と作業意図の類推を試み、エージェントの持つルールとしての内容を数例検討したので報告する。

2. エージェントシステムの概要
2.1 システム構成

Fig.1に深江丸に搭載したエージェントシステムのシステム全体の構成を示す。図中のAgent#1、およびAgent#2がそれぞれ乗組員を支援する形式で、各エージェントはサーバーマシンから提供される「OPERATION DATA（運航データ）」、「PASAGE PLAN（航海計画）」、「CHART OBJECT（海図情報）」、「SHIP’S STATUS（航海状態）」および「AGENT RULE（ルール）」を利用する。

2.2 情報アクセス記録機能

エージェントには、Fig.2に示すユーザインタフェースを持たせた。船長エージェントは海図情報を「CHART SERVER」から取得し、また、コースラインを「PASAGE PLAN SERVER」から取得する。併せて自

船位置、針路、速力を「DATA SERVER」から取得し、これらを重複表示する。表示画面操作として、上下左右のスクロールと拡大縮小のボタンを用意した。

エージェントから乗組員に対して提供する情報を種類として、自船位置の確認に関する情報、自然環境に関する情報、交通環境に関する情報、および地形環境に関する情報提供機能を用意した。各情報は、画面上のボタン押下あるいはクリック操作で呼び出されるものとした。

Table1に提供する情報の種類と、エージェントによる記録例を示す。記録形式は事後の解析作業の容易性を考慮してXML（3）を用いるものとし、一つのアクセスにつき「<log>タグを生成する。

<log>タグの属性として「time」、「source」、「name」および「code」を用意し、それぞれアクセス時刻、アクセス対象の種類、アクセス対象の名前、内容をその値として保持するようにした。

Fig.1 Hardware structure of the agent system

Fig.2 User interface of the agent
3. 情報利用状況の取得と個人による違い

3.1 実験の概要

3.1.1 実験海域

実験は神戸商船大学（神戸市東灘区）と香川県高松港を往復する航海にて実施した。実験の対象海域は、
懐謳瀬戸東航路から高松港港外までの海域とした。
Fig.3とFig.4に実験海域と深江丸の航跡を示す。
各図中のWP（Way Point）に続く番号は、
各航海計画における変針点番号を示す。

3.1.2 被験者

Area1、Area2は、海上交通安全法による航海が設
置されており、船舶の航跡が見られる海域である。
深江丸の運航では、通常これらの海域の航行にあた
っては、一等航海士が当直に入る。実験の被験者と
して一等航海士にエージェントの利用を依頼し、ま
た、同じ航行環境に対する着点点の違いを得るため
に、航海科学部四年生を一名被験者とし、一等航海
士ともに当直に入れてもらった。

当学部生は、計3ヶ月間の乗船実習を経ていた。
航海当直の基礎知識は身に付いているものの、実際
の操船経験は有していない。一等航海士の技量に対

極して最も低いレベルの技量として位置付けた。

3.1.3 実施要領

実験実施にあたり二人の被騨者には予めエージェ
ントの提供する情報の種類、意味と操作方法を説明
し、当直の際に自分の判断でエージェントを利用す
るように依頼した。

実験海域の航行では、一等航海士による操船指
揮が執られた。学部四年生には、一等航海士のサポー
トではなく、自身が操船権をもっているものとし
て必要な情報を判断し、エージェントを利用するよう
に依頼した。

Fig.3 Area 1 (Bisan-Seto Higashi Strait: West Bound)
3.2 実験結果の解析
3.2.1 一等航海士と学部四年生が参照した情報
(1) 目標変針点までの距離と方位
例として、Fig.5, Fig.6 に自船から目標変針点（以下、WP）までの距離の推移、偏位量、ならびに被験者による「目標 WP までの距離と方位」情報をアケス状況を示す。目標 WP までの距離は、各時刻における自船から目標 WP までの直線距離であり、コースラインから外れて WP を航路した場合は、グラフは距離 "0" に至らない。また、各被験者のグラフにおける数字は、当航海計画における WP の番号である。

一等航海士の場合、各海域とも WP の手前約 2 マイルから 1 マイルまでの間で、目標とする WP の距離と方位を確認している。一方、学部四年生の場合は、2 マイルよりも遠いところから目標 WP を確認している傾向が認められる。

一等航海士の場合、Area1 (Fig.3) の場合は、WP7 に向けての確認が 13:40 から 14:15 かけて頻繁にみられる。これは、時間調整のために計画されたコースラインから大小比較的ずれで航行している状態から、元のコースラインに復帰しようとしている状況下であったため、このときの目標である WP7 の方位と距離の確認が求められた。また、Area2 (Fig.4) においては WP6 に向けての確認が、5 マイル手前にとらえられている。この時も漁船同航するため、コースラインから右に 0.5 マイルほど外れて航行することになっていた。そのために目標 WP の方位を早めに確認することになったと考えられる。学部四年生も同じ意図で WP6 の方位と距離を確認しているが、一等航海士の方が学部四年生に比較して確認回数が少なく、また、通勤の所での確認に留まっている。

これは漁船の避航を開始した直後から目標の方位を確認して、漁船を航路した後の復帰プランを早い段階で検討していたものと推測できる。

(2) WP 間の距離と方位
例として、Fig.7, Fig.8 に目標 WP までの距離の推移と被験者による「WP 間の距離と方位」情報へのアクセス状況を示す。各被験者のグラフにある数字はあるコースラインの始点と終点となる WP の番号を示す。

備讃灘東航路付近を航行する場合、一等航海士による頻繁なアクセスが認められた。特に Area1 においては、WP9 から WP10 の間を航行する時点で、WP10・11、WP11・12、および WP12・13 のそれぞれの針路と距離を確認している。WP9 は備讃灘東航路の東側出入口付近にあり、以降のコースラインは同航路の南側を西航し、約 2 マイルの間隔をおいて変針を繰り返すものであった (Fig.3)。

また、当該海域は、漁船の操業が予想される海域であるため、ここで一等航海士は、予めコースラインごとの Course を確認しておく。周囲の監視に集中できるよう準備をしていたものと考えることができ。Area2 においても、WP4 から WP5 の間にあるところ、WP5・6 の針路と距離を確認している。以降のコースラインは、備讃灘東航路へ向かう TURN の流れ、同航路から明石方面あるいは鳴門方面へ向かう TURN の流れに沿うものとなっており (Fig.4), ここでも緊密な見張りが求められることから、準備して確認がされたものと考える。

(3) ARPA データ
ARPA データへのアクセスには、両被験者ともに粗密が認められる。
例として、Fig.9 に Area1 における周囲に存在した他船の隻数と被験者による「ARPA」情報へのアクセス状況を示す。他船の計数範囲は、自船を中心とした 1 マイル、2 マイル、3 マイルの同心円であり、ARPA 捕捉された TURN のみを対象としている。

Area1 において、3 マイル以内に接近する他の TURN が増えるところででは、ARPA データへのアクセスが現れる (Fig.3, 14:00 過ぎ)、このような状態が継続し、さらに 1 マイル以内へ TURN が接近するようになると、これらの監視が継続されるため、ARPA データへのアクセスが無くなった。他の実験海域においても同様の傾向が認められた。

同航路をで、一マイル以内に他船が存在する状況が継続している状況では、他船を緊密に見張る必要があるため、目視による監視が重点的に実施され、エージェントの提供する ARPA データにアクセスしない傾向が現れるものと考える。
Fig.5 Access to “Distance to Next Way Point” (Area 1)

Fig.6 Access to “Distance to Next Way Point” (Area 2)

Fig.7 Access to “Dist. & Bear. Between 2WPs” (Area 1)

Fig.8 Access to “Dist. & Bear. Between 2WPs” (Area 2)
当しており、また、これらの海域は年間の運航を通じて航行する機会が多いことから、一等航海士にとって変針目標に関する形状や位置などの予備的知識は十分に有している、この情報を参照する必要を認めなかったものと考えられる。

一方、学部四年生は一等航海士に比較してこのような予備的知識が十分でないことから、実際の場において当情報にアクセスしたものと考えられる。

(2) 自然環境計測データと外力ベクトル
学部四年生には、自然環境計測データならびに外力ベクトルに対するアクセスが見られたが、一等航海士にはこれらの情報に対するアクセスはほとんど見られなかった。

風や潮流の影響は、海域や自船のHeadingによって変化するものであり、当直にあたる者としてこれらの外力に機敏に対処することが求められる。そこで、一等航海士に外力の推定に必要な情報の収集方法を確認したところ、専ら船橋前面上部の風向風速計、ならびに右航側上部に設置するドップラーソナーの示度を見ていたとの回答を得た。これは一等航海士にとって従来通りの情報確認手段であり、エージェントによるよりも、従来の方程式の方が簡便であるため、エージェントの提供する情報にアクセスしなかったと推察する。

3.2.2 一等航海士が多く参照した情報
一等航海士は「自船からの距離と方位」情報を特によく参照した。このときの計測対象は目標WPであった。「自船からの距離と方位」情報の提供機能は、対象地点を固定したままあっても、自船の移動にともないこの間の距離と方位の表示を更新する。したがって、一度目標のWPを計測対象としていれば、「目標WPまでの距離と方位」情報にアクセスしなくても、同等の情報を一目で入手できる。一等航海士はこの簡便性から当情報へアクセスしたと推察される。

ただし、対象とするWPを航路した後では、再度、新しい目標に設定した必要があることから、この機能だけの利用ではなく「目標WPまでの距離と方位」へのアクセスも併せて行われることとなった。

3.2.3 学部四年生が多く参照した情報
(1) 変針目標の方位と距離
学部四年生は「変針目標の距離と方位」情報をアクセスしているが、一等航海士のアクセスはほとんど無かった。これは、航海計画の最終的な承認は船長によるものの、立案および作成は一等航海士が担当した場合にある。

3.3 考察
3.3.1 情報へのアクセス
エージェントの情報提供機能として、自船位置の確認に関する情報、自然環境に関する情報、交通環境に関する情報、および地形環境に関する情報を用意した。自船位置の確認に関する情報である「目標
WP までの距離と方位、「WP 間の距離」、「WP の ETA (Estimated Time of Arrival：到着予定時刻)」については適宜参照された状況がみられた一方で、自然環境に関する情報についてはの参照はなかった。

ここには、得られる情報に質と情報を得るための労力にトレードオフの関係があると推察できる。つまり、自転位置の確認に関する各情報は、従来の方法であれば、海図的に移動し、現在位置から目標 WP までの距離、あるいは方位は、ディバイダや定規を用いて計測する必要があった。また、ETA については、現実力を元に計算を行う必要があった。今回エージェントが提供したこれらの情報は、従来方式であれば必要とされた労力を代替したものであり、かつ、GPS などのセンサによって得られたデータを電子海図上に重数表示するとともに、偏位量など、解釈あるいは評価までをエージェントが行ったため、画面操作という新たな労力が必要とされても、被験者がアクセスすることになったと考える。

一方で、自然環境に関する情報については、現象の設備から肉眼で表示を読み取ることにより、風向風速の状況あるいは外気の影響の程度を推測することが可能であり、新たな労力を伴って、即ち、エージェントにアクセスして得られる情報は、現象と同程度であるとの判断があったものと推察され、一等航海士はエージェントを経由して自然環境情報を参照することがなかったと考える。

3.3.2 一等航海士の意識

他船が接近している状況では、動的の判断に目視を優先させていることが改めて確認できた。また、船舶が輪郭する海域を航行する場合、予め一等航海士は以後のコースを再確認する傾向があることが分かった。このことは、一等航海士の意識として、当然のことながら、見張りを重要視しているとともに、併せて、避航のためコースラインから偏位することになっても、進むべき針路を意識下に留め置くよう配慮していることを示唆している。

また、一等航海士は、学部四年生が行った変針目標や周囲の水深の確認作業を実施しなかった。この理由として、その経験により該地域の特徴に精通しているためと考えられるが、これらの情報は自船の行動を決定するために必要な知識として既に意識下に存在していると考える。

3.4 エージェントルールの検討

実験結果についての考察から、航海当直業務を支援するためのエージェントが持つルールの要件を以下のように整理する。

『見張り作業を優先する当直航海士に対して、航海計画に対する現状の認識を容易にすることを目的とし、コースラインを基準とした自船の位置、針路、速力の維持あるいは変更に対する判断に必要な情報を、現状の当直航海士がその情報を得るために払う労力よりも少ない労力で、かつ、現状よりも高品質で与える。』

このような要件を踏まえ、航海当直の標準的手続きとして規定することが有用であると思われるルールを以下に考察する。

ただし、表現中の『数値』はあくまで深江丸の要目と今回の実験結果のみを参照して仮に設定するものである。

①目標 WP の確認

コースラインからの偏位角が[0.5]マイルを超える場合は、目標 WP までの距離と方位を表示し、乗組員からの確認を求める。

②WP 間の距離と方位の確認

輪郭する海域、あるいは狭隘な海域を航行する場合には、それらの海域に至る前段階で、かつ、交通環境が厳しくないときに、先々のコースラインにおける WP 間の距離と方位を示し、乗組員の確認を求める。

また、当該海域の航行中には現コースラインと次のコースラインの距離と針路を、航行の進行に合わせて適宜切り替え表示する。

③変針目標の確認

変針点に至る[1〜2]マイル手前で、その時点での自船位置からみた当該 WP の変針目標の見える方位ならびに距離を表示し、乗組員の確認を求める。

④外力に対する確認

外力による大きさ（速度）が[1]ノットを超える場合は、その旨の警告を表示するとともに、外力の方向を考慮して、コースライン上を航行するために必要な修正針路を表示し、乗組員の確認を求める。

⑤地形環境に関する確認

コースラインから[0.5]マイルを超えて偏位した場合は、偏位した方向に存在する水深[10] m未満の個所を赤色表示、あるいは、No Go Area（自船喫水よりも浅い水深となっている水域）として表示し、乗組員の確認を求める。
4. おわりに

深江に搭載したエージェントシステムについて
乗組員への情報提供機能を拡充し、同一の航海環境下における、操船記録の異なる二人の被験者による
情報アクセスの違いを明らかにした。

エージェントの提供する情報が利用されるために
は、現状よりも少ない労力で、かつ、現状と同等か
高いレベルの情報を提供する必要があることが分か
った。

一方、一等航海士の意識として、見張りを重要視
していることは当然であるが、航海計画を執行する
ために必要な知識は意識下に留め置くよう配慮して
いるものと考えられる。

このような一等航海士の意識を反映して、エージ
ェントが持つルールの要件を整理し、今回の実験結
果の範囲内に留まるものの、エージェントのルール
の数例を検討した。

エージェントの提供する情報に対して被験者がこ
れを利用するか否かは、使い勝手、即ちユーザインタ
フェースの良し悪しに影響される。したがって、
今回の実験結果からだけで、情報アクセスを記録す
る方法によって被験者が組み立てている作業手順の
全てを再現できるとは言えない。しかしながら、こ
の方法により、被験者の注意が必要なような対象に向
けられているのかを、部分的ではあるが、知り得る
ことが分かった。

今後、ユーザインタフェースの改良とともに、今
回得られたルール案をエージェントに実装・運用し
て、当直者による評価を行い、ルールの要件の検証
を行う予定である。

参考文献等
(1) 広野康平：実船搭載型エージェントシステムの
開発-船舶運航管理への運用に向けて-、日本航
海学会論文集, No. 108, pp.1-9, 2003.3
(2) 広野康平：船舶運航におけるエージェント技術
の応用、日本航海学会論文集, No.106, pp.21-
28, 2002.3
(3) http://www.w3.org/XML/
http://www.atmarkit.co.jp/aig/01xml/xml.html
http://www.keyman.or.jp/search/a_30000001_1.html

質疑応答

鈴木 治（鳥羽商船高等専門学校）
沿岸航海中の「ルール」は入出港検査にも利用可
能でしょうか。また、ここでの「ルール」は一般
的な「シナリオ」と考え方が異なりますか。

広野康平:
入出港検査中は、人員配置や注意すべき、あるいは
は優先すべき作業が沿岸航海中とは異なりますので、
エージェントが提供する情報あるいは作業内容も
その時に合致している必要があると考えます。従
って、ルールも異なると考えます。

また、ご指摘の「シナリオ」という概念は重要で、
適用されるルールのグループ分けに「シナリオ」
が用いられると考えます。つまり、沿岸航行シナ
リオにて適用されるルール群、入港検査シナリオ
にて適用されるルール群がそれぞれ存在し、エー
ジェントは別途航行状況からシナリオを判断して
適用すべきルールを選定する、という整理を考え
ています。