北太平洋航空路における近接通過頻度の長期的変化

天井 治

Long-term Transition of the Passing Frequency on the North Pacific Route

Osamu AMAI

Abstract

The safety of the North Pacific route system has been evaluated using a collision risk model. Passing frequency is one of the important parameters of the model. The passing frequency is the twice of expected frequency of overlapping event in the longitudinal direction. It depends on the route structure, the number of flight and so on. In this paper, monthly lateral and vertical passing frequency values for the North Pacific route are calculated using flight plan data of about eight years and long-term transition of the passing frequency values are investigated. One result obtained shows that the passing frequency values under the implementation of a reduced vertical separation minimum do neither increase nor decrease remarkably.

Keywords: Air Traffic Control, Safety, Passing Frequency, Collision Risk, North Pacific route

キーワード：航空管制，安全性，近接通過頻度，衝突危険度，北太平洋航空路

1. はじめに

航空交通管制では、航空交通の安全および効率的運航のために、航空交通管制官（以後、管制官と呼ぶ）が最低限確保すべき航空機間の間隔（管制間隔）の基準を定めている。

レーダの覆域外となる洋上の空域では、管制官は短波無線通信による1時間に1回程度のパイロットの位置伝報により、航空機の位置を把握している。このため、レーダ覆域内に比べ10倍以上大きい管制間隔の基準を用いている。

日本と北米を結ぶ北太平洋の洋上航空路（北太平洋航空路）では、1998年4月23日までは進行方向の間隔（縦間隔）は10分または15分、横間隔は100 NM（1 NM=1852 m）、高さ方向の間隔（垂直間隔）は2,000 ft（1 ft=0.3048 m）であった。

著者らは、北太平洋航空路の安全性の評価および航空交通のより効率的な運航を図るための管制間隔基準の短縮可能性を検討している。その成果もあり、北太平洋航空路では、航法装置の性能向上などを背景に、1998年4月23日からRNP（航法性能要件）10承認機に対し50 NM横間隔が適用されている。

更に2000年2月24日から短縮垂直間隔承認機に対しフライトレベル（FL）410（41,000 ftに相当）以下の高度で1,000 ft垂直間隔が適用されている。現在は、自動従属監視（ADS）を用いた航空機位置の監視の下で縦間隔の短縮が検討されている。

洋上航空路の安全性評価では、安全性の尺度として数学モデルに基づく衝突危険度がしばしば用いられる。この評価では、航空機の航法性能や交通流の特性を反映するパラメータを、対象空域における実測データにより推定することが必要となる。

近接通過頻度は衝突危険度モデルの重要なパラメータの一つで、航空機同士が進行方向で離れ違う頻度の2倍の期待値である。この値はルート構成、飛行便数などにより変わる。この値の推定例はいくつかあるが、長期間に亘る値の変化の調査報告は見あたらない。

そこで、1996年1月1日からの連続した8年2ヶ月の飛行計画情報を用いて月毎の垂直方向および横方向の近接通過頻度を計算し、その変化を調べた。

* 正会員 独立行政法人 電子航法研究所 〒182-0012 東京都調布市浄大寺東町7-42-23 amai@enri.go.jp
この期間内には、航空路の飛行方向の変更、横間隔短縮、垂直間隔短縮があった。本研究は、これらの航空路システムの変更により、どの様に近接通過頻度が変化したかを調査し、今後のシステム変更に役立てることを目的とする。また、現在のシステム構成の近接通過頻度が増加傾向にあるのか、減少傾向にあるのかについても調べ、安全性評価に役立てることを目的とする。

本稿では、まず、衝突危険度モデルについて概説する。次に近接通過頻度の定義および計算式を示す。続いて、評価対象空域および計算に使用したデータについて述べる。そして、実際の近接通過頻度の計算方法と得られた結果を述べ、最後にまとめる。

2. 衝突危険度モデル

2.1 概念

衝突危険度モデル[1]は、1966年にReichにより提案され、現在は国際民間航空機関の管制間隔検討パネルで改良されたものと用いられている。

このモデルでは、航空機を直方体と考える。航空機は予め管制機関により割り当てられた経路の中心線上を飛行することが期待されるが、実際には航法誤差や人のミスなどのために割当経路や割当高度から逸脱して飛行の可能性がある。この逸脱により管制間隔を喪失し、両機（2つの直方体）が三次元的に重なる場合を衝突と考える。

衝突危険度モデル (Reich モデル) では、縦、横、高さの各方向の各図示効果を独立に仮定し、横および高さ方向で重なる確率および進行方向で重なる（すれ違い）確率をそれぞれ推定し、それぞれの積として衝突危険度を求める。

Reich モデルでは、位置精度と機関速度関数が時間に依存しない（定常）状態を統計的に扱っている。時間的に依存する場合を考えたモデルも提案されているが、ここでは簡単のため、Reich モデルを取り扱う。

2.2 計算式

衝突危険度 N_{sr} (r=\gamma または \zeta) は、航空路システム内の航空機が単位飛行時間あたりに垂直(\gamma) または横(\zeta)間隔を喪失して起こる衝突事故件数（1衝突は2事故とみなす）の期待値であり、次式で計算できる。

\[N_{sr} = P_{r}(S_{r})P_{s}(S_{s})[N'_{r}(\gamma)K(\gamma)+N'_{s}K(\zeta)] \quad (1) \]

記号の意味は次通りである。

\(P_{r}(S_{r}) \) 横方向重叠確率（\(S_{r} \) だけ離れた経路を同一\n高度で飛行する航空機対が横方向で重なる確率）

\(P_{s}(S_{s}) \) 垂直方向重叠確率（同一経路で \(S_{s} \) だけ離れた

\(K(\gamma) \) 單方向の反航／同航近接通過頻度

\(K_{r}(\gamma) \) 航空機の大きさや相対速度に応じて得られた結果を述べ、最後にまとめる。

3. 近接通過頻度

ある航空機が同一経路上を隣接高度で飛行する航空機と進行方向で重なる事象を垂直方向近接通過と呼ぶ。同様に、隣接経路上を同一高度で飛行する航空機と重なるものを横方向近接通過と呼ぶ。

Fig.1 に示すように両機の進行方向が同じ場合を同航近接通過、反対の場合を反航近接通過と呼ぶ。図では垂直方向の場合を示し、横方向の場合も同様である。本稿では、同航を \(r \)、反航を \(o \) の文字で表す。

近接通過頻度は単位飛行時間あたりの近接通频繁度
数の期待値である。観測時間内に考察空域内で起こるr向の近接通過の回数を \(n_r'(o/s) \)、各機種が考察空域内の通過に要した時間の総和を \(H \) すると、近接通過頻度 \(N_r'(o/s) \) は式で求める。

\[
N_r'(o/s) = \frac{2n_r'(o/s)}{H}
\]

(3)

\(N_r'(o/s) \) の単位は [機・飛行時間] である。また、1 回の近接通過に2機が関与するために2を掛けている。

実際の計算では、経路を幾つかの区間に分割し、分割区間毎に近接通過回数および飛行時間を計算した。そして、次式により全体の \(N_r'(o/s) \) を求めた。

\[
N_r'(o/s) = \frac{2 \sum (n_r'(o/s))_i}{\sum H_i}
\]

(4)

ここで、\((n_r'(o/s))_i \)、\(H_i \) はそれぞれ分割区間 \(i \) における近接通過回数と総飛行時間を表す。

同航と反航の近接通過頻度の衝突危険度への関与の程度をまとめて把握できる量として、等価反航近接通過頻度 \(N_r'(e) \) がある。これは次式で計算できる。

\[
N_r'(e) = N_r'(o) + \frac{K(s)}{K(o)} N_r'(s)
\]

(5)

本稿では文献[4]を参考にして、\(\lambda_x = 0.036 \) NM、\(\lambda_y = 0.032 \) NM、\(\lambda_z = 0.010 \) NM、\(\sqrt{V} = 960 \) knots、\(\Delta V = 28.9 \) knots、\(\sqrt{V} = 11.6 \) knots、\(z = 1 \) knots から \(K(o) \) を \(K(s) \) の値をそれぞれ 1.017、1.576 とした。航空機のサイズ、進行方向および横方向の相対速度の値に対しては、NOPAC ルートでの推定値 \(\bar{K} \) を使用したが、これらは欧米で用いられている値と大きくは異ならない。

以下では、1,000 ft 垂直間隔での垂直方向同航近接通過頻度を \(N_r^s(o) \)、50 NM 横間隔での横方向反航近接通過頻度を \(N_r^s(o) \) のように表す。

4. 評価対象空域

Fig.2 の破線で囲まれた空域を近接通過頻度の計算対象とした。これは、北太平洋航空路における日本の管轄空域（東京 FIR（飛行情報区）内）である。

北太平洋航空路は5本の経路（北から R220, R580, A590, R591, G344）で構成される。図中の矢印は飛行方向を示す。R580, A590, R591 の飛行方向は1997年5月下旬を境に変更されている。

北太平洋航空路では Table 1 に示すようにルートの構成が変更されている。対象機は、Fig.2 に示す空域を高度 FL290 以上 FL410 以下で飛行したすべての航空機とした。尚、1998年4月23日以前の R580 と R591 に対しては、高度 FL280 以上 FL410 以下とした。

<table>
<thead>
<tr>
<th>period</th>
<th>longitudinal</th>
<th>lateral</th>
<th>vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>before 23 Apr. 1998</td>
<td>15 minutes</td>
<td>100 NM</td>
<td>2,000 ft</td>
</tr>
<tr>
<td>from 23 Apr. 1998 to 24 Feb. 2000</td>
<td>15 minutes</td>
<td>50 NM</td>
<td>2,000 ft</td>
</tr>
<tr>
<td>after 24 Feb. 2000</td>
<td>15 minutes</td>
<td>50 NM</td>
<td>1,000 ft</td>
</tr>
</tbody>
</table>
Fig.3 Concept of route division of route pair

5. 使用データ
近接通過頻度の計算には、1996年1月1日から2004年2月29日までの8年2ヶ月分の飛行計画情報を利用した。飛行計画情報には、便名、機種名、経路上の各位置通報点（FIXと呼ぶ）の通過時刻、飛行高度等が記載されている。FIXは航空機が上空を通過する際に、管制官に航空機の現在位置を知らせる目的で位置通報（通過時刻、飛行高度等の報告）を行う地点である。尚、FIX通过時刻は実際の通過時刻と最大3分の差異がある場合がある。

6. 近接通過頻度の計算方法
横方向の近接通過回数は、Fig.3に示すような2本の経路（経路対）に対して計算する。同一ルート上の隣り合うFIX間の領域をルートセグメント（RS）と呼ぶ。経路の分岐・合流がある場合には、各ルートセグメントの通過機数は必ずしも等しくならない。そこで、図のように経路対を分割し、(4)式で\(N_\phi/\phi\)を求めた。

垂直方向の場合は、ルートセグメント毎に分割し、同様の計算を行った。

近接通過の有無は、一対の航空機の各FIXの通過時刻をもとに算出した。この際、次のように処理をした。
①ルートセグメント端での近接通過は0.5回と計数。
②経路変更の際、経路間を飛行中の近接通過は無視。
③高度変更時は、直前に通過したFIXで直ちに高度を変更したと見なしで計算。

7. 平均飛行時間
Fig.4に経路毎の各月の1日の平均飛行時間の変化を示す。近接通過頻度を計算するために求めた月毎の縦飛行時間を月の日数で割り、1日の平均飛行時間を求めた。R220がもっとも長く、次いで概ねA590、R580、R591、G344の順となっている。

R220では9ヶ月間で傾向が変わる。5ヶ月の経路の記録を見ると、月毎の変動も大きいが、緩やかな増加傾向が続く。図の中に回帰直線を示した。一ヶ月毎に0.70時間の増加傾向にあることが分かる。相関係数は0.67であった。

航空機の巡航速度は、一定もしくは最近機になるに従い増加する傾向にある。北太平洋航空路では、ジェット気流と呼ばれる偏西風が吹いており、風速は100knotsを超える場合もあるが、西向き一方通行経路のR220と東向き一方通行経路のA590は、いずれも増加傾向にある。これらのことから、この平均飛行時間の増加は交通量の増加を示すと考えられる。

尚、2001年9月から数ヶ月間落ち込んでいるのは、同時多発テロの影響と考える。
Fig. 5 Transition of vertical passing frequency (VSM stands for a vertical separation minimum)

Fig. 6 Transition of lateral passing frequency of route pair separated by 100 NM

Fig. 7 Transition of lateral passing frequency of route pair separated by 50 NM
8. 近接通過頻度の計算結果

8.1 垂直方向の近接通過頻度

Fig.5 に示す各月の垂直方向近接通過頻度の計算結果を示す。横軸は月を、縦軸に近接通過頻度を示す。図中には(5)式で計算した \(N_{\bar{e}}(\theta)\) の値も示した。年 \(2000\) 年 \(2\) 月 \(24\) 日に垂直間隔基準が \(2000\) つから \(1000\) つに短縮された。2,000 つの垂直重合確率 \(P_{r}(2000)\) は \(P_{r}(1000)\) に比べて \(4\) 倍程小さく、\(N_{\bar{e}}^{2000}(\theta)\) は \(N_{\bar{e}}^{2000}(\theta)\) の約 \(2\) 倍であり、結論として、垂直間隔基準短縮後の \(N_{\bar{e}}^{2000}(\theta)\) の無視した。

Fig.5 では \(N_{\bar{e}}^{2000}(\theta)\) は \(1997\) 年 \(5\) 月下旬に最も近いが、これは Fig.2 のように各ルートの飛行方向が変更され、一方通行経路が増えるためであると考える。それ以降の \(N_{\bar{e}}^{2000}(\theta)\) および \(N_{\bar{e}}^{2000}(\theta)\) を見る限り、月別の変動は大きいところ \(0.02\) [機/飛行時間] 程である。図中には示していないが、\(N_{\bar{e}}^{2000}(\theta)\) の帰回直線の式は、\(y = 4\times10^{5}\times0.039\) となった。これは、\(N_{\bar{e}}^{2000}(\theta)\) は平均値 \(0.039\) [機/飛行時間] で、著者増加や減少の傾向がないことを示唆している。

また、年 \(2000\) 年 \(3\) 月以降の \(1000\) つ垂直間隔における近接通過頻度 \(N_{\bar{e}}^{1000}(\theta)\) は、それ以前の \(2000\) つ垂直間隔のときの \(N_{\bar{e}}^{2000}(\theta)\) の \(7\) 倍値に減少していることがわかる。これは、1,000 つ垂直間隔下では、2,000 つ垂直間隔の時より選択できる高度が増える結果として、2,000 つ垂直間隔のときより使用高度が散らかたためと考える。

8.2 橫方向の近接通過頻度

1998 年 \(4\) 月 \(23\) 日に横間隔基準が \(100\) つから \(50\) つに短縮された。横方向の場合は、垂直方向の場合と異なり \(100\) つの横方向重合確率 \(P_{y}(100)\) は \(P_{y}(50)\) の \(1/3\) 倍にしかないため、横間隔基準短縮以降も \(N_{\bar{e}}^{100}(\theta)\) は無視できないう。このため、横方向の衝突危険度 \(N_{x}\) は次式のように計算すべきと推奨されている[4][5].

\[
N_{y} = P_{y}(0)[P_{y}(50)(N_{x}^{50}(\theta)K(\theta)) + N_{x}^{100}(\theta)K(s)] + P_{y}(100)(N_{x}^{100}(\theta)K(\theta) + N_{x}^{100}(\theta)K(s))
\] (6)

8.2.1 \(N_{\bar{e}}^{100}(\theta)\) の計算結果

Fig.6 に \(100\) つ間隔の横方向近接通過頻度の計算結果を示した。\(N_{\bar{e}}^{100}(\theta)\) は \(N_{\bar{e}}^{100}(\theta)\) に比べて一桁から再桁小さな値となっている。具体的には \(2000\) 年 \(2\) 月までの平均値で比較して \(58\) 分の \(1\), それ以上は \(102\) 分の \(1\) である。

\(N_{\bar{e}}^{100}(\theta)\) は横間隔基準短縮の頃 (1998 年 \(3\) 月 \(〜\) \(8\) 月) から一時減少するがその後 \(2000\) 年 \(2\) 月までは増加傾向にある。\(2000\) 年 \(2\) 月の垂直間隔基準短縮の後、2000 年 \(9\) 月 \(〜\) \(2000\) 年 \(2\) 月までの平均値は \(0.15\) [機/飛行時間] 程（平均値で \(0.14\) [機/飛行時間]) に減少するが、それ以降 \(0.15〜0.35\) [機/飛行時間] 程の値を取っている。月毎の変動が激しく、ある月では \(0.1\) [機/飛行時間] 程の変化がある。

2000 年 \(10\) 月以降の回帰直線の式は \(y=2\times10^{5}\times0.25\)、相関係数は \(0.045\)、標準偏差は \(0.051\) [機/飛行時間]、平均値は \(0.25\) [機/飛行時間] であった。著者増加や減少8の傾向は観察されないことと分かる。

尚、2002 年 \(2\) 月の横方向近接通過頻度の値は、この月に \(0\) 位置が同じ名前のまま移動し、煩雑な計算が必要となるため、今回は時間的都合で割愛した。

8.2.2 \(N_{\bar{e}}^{50}(\theta)\) の計算結果

Fig.7 に \(50\) つ間隔の横方向近接通過頻度の計算結果を示した。

\(N_{\bar{e}}^{50}(\theta)\) は \(1998\) 年 \(5\) 月 \(〜\) \(2000\) 年 \(2\) 月までの回帰直線の式は \(y=7\times10^{5}\times0.018\)、相関係数は \(0.12\)、標準偏差は \(0.040\) [機/飛行時間]、平均値は \(0.019\) [機/飛行時間] であった。2000 年 \(3\) 月 \(〜\) \(2000\) 年 \(2\) 月までの回帰直線の式は \(y=5\times10^{5}\times0.012\)、相関係数は \(0.25\)、標準偏差は \(0.0027\) [機/飛行時間]、平均値は \(0.011\) [機/飛行時間] であり、著者増加や減少の傾向は見られない。

\(N_{\bar{e}}^{50}(\theta)\) は横間隔基準短縮の数ヶ月前から急激に増加し、短縮後は短縮前の \(1/2\) 程度の値が \(0.07\) [機/飛行時間] で緩やかに変動している。

回帰直線の式は \(y=1\times10^{5}\times0.33\)、相関係数は \(0.12\)、標準偏差は \(0.014\) [機/飛行時間]、平均値は \(0.036\) [機/飛行時間] であり、垂直間隔基準短縮後は著者増加や減少の傾向は見られない。

垂直間隔基準短縮後に、横方向の近接通過頻度が減少（平均値で \(N_{\bar{e}}^{100}(\theta)\) は \(0.62\) 倍、\(N_{\bar{e}}^{100}(\theta)\) は \(0.35\) 倍、\(N_{\bar{e}}^{50}(\theta)\) は \(0.35\) 倍、\(N_{\bar{e}}^{50}(\theta)\) は \(0.55\) 倍）した理由も、短縮後の、使用高度が散らかたためである。
8.3 近接通過頻度の統計値

Table 2 に 2000 年 3 月から 2004 年 2 月までの値を一覧にした場合の各近接通過頻度の統計値を示す。括弧内は 2000 年 10 月から 2004 年 2 月までを繰まった値を示す。N_r^\text{2000}(o) は平均値に比べ標準偏差が小さく、安定していることが分かる。

8.4 ルート毎の近接通過頻度

Table 3 に、2002 年 11 月のデータによるルートおよびルート対毎の近接通過頻度の推定結果を示した。Fig.5〜Fig.7 から、この月の値は 2000 年 3 月以降の中で、比較的大きな値になっていることが分かる。

R220-A590 に対する N_r^\text{2000}(o) は 0.4166 [機/飛行時間] と他に比べ大きな値となっている。これは、西行き便の約 7.5 割が R220 を、東行き便の約 7 割が A590 を飛行していることが原因である。R220、A590 の N_r^\text{2000}(o) からもその影響を窺うことができる。

9. まとめ

1996 年 1 月 1 日から 2004 年 2 月 29 日までの 8 年 2 ヶ月分の飛行計画情報を用いて、月毎に横方向および垂直方向の近接通過頻度を計算し、その長期の変化を調べた。その結果、次のようなことが分かった。

(1) 飛行時間は緩やかな増加傾向がみられた。
(2) 横方向、垂直方向近接通過頻度とも、2000 年 3 月以降、顕著な増加や減少の傾向は見えない。
(3) 垂直間隔基準短縮後の近接通過頻度（1,000 イConstruction missing from image)
(4) 2000 年 3 月以降の 50NM 間隔の横方向反航近接通過頻度は 2000 年 2 月以前のそれの 1/2 程になった。

今後は、近接通過頻度の値を調べ続けると共に、横方向近接通過頻度が垂直間隔短縮前に増加している理由を明らかにしたい。

謝辞

飛行計画情報の収集にご協力頂いた国土交通省航空局および東京航空交通管制部の各位に感謝致します。

Table 2 Statistics of each passing frequency (from March 2000 to February 2004)
All units are [aircraft-flight hour].

<table>
<thead>
<tr>
<th>Route pair</th>
<th>N_r^\text{2000}(o) [aircraft/flight hour]</th>
<th>N_r^\text{2000}(s) [aircraft/flight hour]</th>
<th>N_r^\text{2000}(e) [aircraft/flight hour]</th>
<th>Total flight hours [flight hour]</th>
</tr>
</thead>
<tbody>
<tr>
<td>R220-R580</td>
<td>0</td>
<td>0.0171</td>
<td>0.0265</td>
<td>7131.00</td>
</tr>
<tr>
<td>R580-A590</td>
<td>0.0916</td>
<td>0</td>
<td>0.0916</td>
<td>4521.14</td>
</tr>
<tr>
<td>A590-R591</td>
<td>0.0171</td>
<td>0.0056</td>
<td>0.0258</td>
<td>3745.46</td>
</tr>
<tr>
<td>R591-G344</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>768.85</td>
</tr>
<tr>
<td>Total</td>
<td>0.0432</td>
<td>0.0129</td>
<td>0.0632</td>
<td>11076.31</td>
</tr>
</tbody>
</table>

Table 3 Estimate of passing frequency of each route or route pair (based on FDP data of November 2002)

<table>
<thead>
<tr>
<th>Route pair</th>
<th>N_r^\text{2000}(o) [aircraft/flight hour]</th>
<th>N_r^\text{2000}(s) [aircraft/flight hour]</th>
<th>N_r^\text{2000}(e) [aircraft/flight hour]</th>
<th>Total flight hours [flight hour]</th>
</tr>
</thead>
<tbody>
<tr>
<td>R220-R580</td>
<td>0</td>
<td>0.0171</td>
<td>0.0265</td>
<td>7131.00</td>
</tr>
<tr>
<td>R580-A590</td>
<td>0.0916</td>
<td>0</td>
<td>0.0916</td>
<td>4521.14</td>
</tr>
<tr>
<td>A590-R591</td>
<td>0.0171</td>
<td>0.0056</td>
<td>0.0258</td>
<td>3745.46</td>
</tr>
<tr>
<td>R591-G344</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>768.85</td>
</tr>
<tr>
<td>Total</td>
<td>0.0432</td>
<td>0.0129</td>
<td>0.0632</td>
<td>11076.31</td>
</tr>
</tbody>
</table>

参考文献

質疑応答

茶木英一（株）航空システムコンサルタンツ）：
当該講演の（飛行計画情報の）データはどの様に入手したのでしょうか？

天井治：
東京航空交通管制局から飛行計画情報を定期的に入手し、8年2ヶ月分のデータを収集しました。飛行計画情報といっても、実際のデータには、「計画」の情報ではなく管制官が実際に管制を行った情報が入っております。

[8] 天井治・長岡栄：衝突危険度による洋上複合間隔ルートの安全性評価－Ⅲ－NOPACルートの水平方向の衝突危険度，日本航海学会論文集，95, pp.87-96, March 1997
[12] 天井治・長岡栄：北太平洋航空路の安全性の評価－ルート構成変更後の近接通過頻度の計算－，電子情報通信学会技術研究報告, SSS99-25, October 1999