A study on ship’s drifting in wind and wave

Masanori TSUGANE

Abstract
A ship’s drifting due to engine trouble was reported. In case that a ship’s drifting due to engine trouble happens in shallow water and the ship drifts toward shore side, there is a possibility to cause a grounding accident. Especially the strong wind and high wave in rough sea produce the high drifting velocity. The high drifting velocity is pointed out in the report of the actual ship’s drifting.
The studies on ship’s drifting before have been mainly conducted in deep water case with wind effect. For example since the accident of Nodoka in the Japan Sea the studies on ship’s drifting in deep sea under rough sea in the field of naval architects have been reported.
On this study the author focused on the effect of wave drifting force against a ship’s drifting in the shallow water besides wind effect.

Keywords : Constant drifting force , Ship drifting, Engine trouble

キーワード：定常波漂流力，船体漂流，機関故障

1. はじめに
機関故障による船体漂流事例が報告されている。船体漂流が水深の比較的小い水域で発生し、漂流方向 が陸岸に向かう海象状況下では広範囲の恐れがあり非常に危険である。特に荒天時においては、風と波 による漂流速度も大きくなることからタグポート の支援が早期に得られない場合、あるいは投陸準備が すぐにできない場合には深刻な事態となることが予 想される。

船体漂流の検討は、これまで主として深水域を対 象として、風による漂流の研究が行われていること 多かった。例えば日本海におけるナホトカ号漂流 事故以来、造船工学の分野では荒天時の船体漂流の 研究が盛んに行われている。しかしながら、浅水域 における船体漂流について、風と波の影響を合わせ て検討した事例はほとんど見られない。実船の報告 でも高波高下における漂流速度の大きいことが指摘 されている。

一般に船船運航者は、風と波が同時に発生するこ とから船体漂流を風に起因すると考える傾向があり、

波の影響に対する認識が薄いと思われる。

そこで本研究では、荒天時に浅水域で機関故障が 発生し船体漂流という事態に陥った場合における船 舶運航者の配慮すべき要素として波の定常漂流力に 注目し、その及ぼす影響を考察した。

2. 実船の漂流事例

ケーブサイズのスラリー式鉱石運搬船がタグポー トを使用せずに SBM に着艦操船を行っている際、 機関故障が発生し緊急投陸による船体停止にいたる までの間、船体が風とウネリによる漂流を行った事 例があった。漂流水域はやや浅水域（水深 25m）で あり、風は約 10m/s であったがウネリの波高は 4.5m と高い状態であった。当該船型の主要目と漂流時の 状態を Table 1 及び Table 2 に示す。

＊正会員　東海大学海洋学部　〒424-8610　静岡市清水折戸 3-20-1
ここでは、船体が規則波による定常波漂流力と定常風による風圧力が流圧力と釣り合って一定速度で漂流しているものとして、定常波漂流力の推算を試みた。

3.1 定常波漂流力に関する研究

定常波漂流力に関する研究には、基礎的な研究として定常波漂流力が物体からの反射波によるものであることを示した丸尾、田才の研究がある。また、昭和50年代の大型浮体式海洋構造物の保留問題として取り上げた野尻等、水野、新井等、中村等、安藤、工藤等、朝長等の研究が、さらに最近では荒天時における漂流船体の海洋汚染に関する研究がナオトカ号事件を契機に海上技術安全研究所を中心に精力的に行われている。野野、星野等、谷澤等の研究が報告されている。

3.2 定常波漂流力の推算

3.2.1 定常波漂流力の計算式

実船の定常波漂流力の推算は沿岸部であるから水深影響を考慮した計算式を考慮する必要が、昭和50年初頭3年間に渡り研究を行われた（社）日本造船研究協会の報告書に提示されている以下の計算式を採用した。

\[
F_d = \frac{1}{2} \rho \cdot g \cdot \eta^2 \cdot L_{pp} \cdot \sin \alpha \cdot R \cdot \gamma^2
\]

\[
\eta : \text{入射波の振幅 (m)}
\]

\[
\alpha : \text{相対波向 (°)}
\]

\[
R \cdot \gamma : \text{波漂流力係数}
\]

同報告書では、定常波漂流力は浅水中の横揺れ同調時に極大値に特徴的にあらわれ、その考慮すべき範囲は、浅水中での横揺れ同調円周波数を \(\omega \) とすると無次元波数の関数として \(K_s \leq 0.25 \) の間と考え、\(R \cdot \gamma \) の下記のとおり算定している。

\[
R \cdot \gamma = R_d + R_s (K_s < 0.25)
\]

\[
R \cdot \gamma = R_d (K_s > 0.25)
\]

\[
T_s = C(h/d) \cdot T_d
\]

\[
\omega = 2\pi/T
\]

\[
R_s = P(h/d) \cdot R(k) (K_s < 0.25)
\]

ここに \(\omega \) : 入射波の円周波数（\(\omega = 2\pi/T \)）

3.3 実船の定常波漂流力の推算

漂流時の風速（約 10m/s）に対して漂流速度が約 1.9knots とかなり大きいことから判断して、風圧力のみならず定常波漂流力が作用していることが考えられる。
K = \omega^2 \cdot \frac{d}{g} （深水中の無次元波数）
K_s = \omega^2 \cdot \frac{d}{g} （浅水中の無次元波数）

Table 2 及び Table 3 に各種補正係数、Fig. 2 に波漂流係数のイメージ図を示す。

<table>
<thead>
<tr>
<th>h/d</th>
<th>C(h/d)</th>
<th>P(h/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>2.00</td>
<td>4.85</td>
</tr>
<tr>
<td>1.2</td>
<td>1.71</td>
<td>3.57</td>
</tr>
<tr>
<td>1.3</td>
<td>1.54</td>
<td>2.82</td>
</tr>
<tr>
<td>1.4</td>
<td>1.43</td>
<td>2.25</td>
</tr>
<tr>
<td>1.6</td>
<td>1.30</td>
<td>1.44</td>
</tr>
<tr>
<td>1.8</td>
<td>1.22</td>
<td>1.06</td>
</tr>
<tr>
<td>2.0</td>
<td>1.18</td>
<td>0.81</td>
</tr>
<tr>
<td>2.5</td>
<td>1.10</td>
<td>0.39</td>
</tr>
<tr>
<td>3.0</td>
<td>1.06</td>
<td>0.16</td>
</tr>
<tr>
<td>4.0</td>
<td>1.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 3 に各種補正係数、Fig. 2 に波漂流係数のイメージ図を示す。

<table>
<thead>
<tr>
<th>K</th>
<th>R(k)</th>
<th>K</th>
<th>Rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_s \pm 0.25</td>
<td>0.000</td>
<td>K</td>
<td>0.000</td>
</tr>
<tr>
<td>K_s \pm 0.20</td>
<td>0.045</td>
<td>K</td>
<td>0.019</td>
</tr>
<tr>
<td>K_s \pm 0.15</td>
<td>0.175</td>
<td>K</td>
<td>0.072</td>
</tr>
<tr>
<td>K_s \pm 0.10</td>
<td>0.423</td>
<td>K</td>
<td>0.160</td>
</tr>
<tr>
<td>K_s \pm 0.05</td>
<td>0.798</td>
<td>K</td>
<td>0.286</td>
</tr>
<tr>
<td>K_s \pm 0.00</td>
<td>1.000</td>
<td>K</td>
<td>0.446</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ka</th>
<th>Ra</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_a</td>
<td>0.0</td>
</tr>
<tr>
<td>V_a</td>
<td>0.0</td>
</tr>
<tr>
<td>\alpha</td>
<td>0.0</td>
</tr>
<tr>
<td>\theta</td>
<td>0.0</td>
</tr>
<tr>
<td>A</td>
<td>0.0</td>
</tr>
<tr>
<td>B</td>
<td>0.0</td>
</tr>
<tr>
<td>\rho_a</td>
<td>0.0</td>
</tr>
</tbody>
</table>

3.2.2 風圧力及び流圧力に関する計算式及び通常数
(1) 風圧力及び風圧モーメント
風圧力及び風圧モーメントの計算式は以下のとおりである。

Ra = \frac{1}{2} \rho Ca Va^2 (\cos^2 \alpha a + \sin^2 \alpha a)

(2) 流圧力及び流圧モーメント
流圧力及び流圧モーメントの計算式は以下のとおりである。

Rw = \frac{1}{2} \rho Cv W^2 L d

Table 4 に風力係数を示す。

<table>
<thead>
<tr>
<th>\alpha</th>
<th>Fu</th>
<th>\beta</th>
<th>Ballast</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>10.0</td>
<td>0.100</td>
<td>0.1</td>
</tr>
<tr>
<td>20</td>
<td>20.0</td>
<td>0.100</td>
<td>0.1</td>
</tr>
<tr>
<td>30</td>
<td>30.0</td>
<td>0.100</td>
<td>0.1</td>
</tr>
<tr>
<td>40</td>
<td>40.0</td>
<td>0.100</td>
<td>0.1</td>
</tr>
<tr>
<td>50</td>
<td>50.0</td>
<td>0.100</td>
<td>0.1</td>
</tr>
<tr>
<td>60</td>
<td>60.0</td>
<td>0.100</td>
<td>0.1</td>
</tr>
<tr>
<td>70</td>
<td>70.0</td>
<td>0.100</td>
<td>0.1</td>
</tr>
<tr>
<td>80</td>
<td>80.0</td>
<td>0.100</td>
<td>0.1</td>
</tr>
<tr>
<td>90</td>
<td>90.0</td>
<td>0.100</td>
<td>0.1</td>
</tr>
<tr>
<td>100</td>
<td>100.0</td>
<td>0.100</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Fig. 2 Drifting force coefficient
<table>
<thead>
<tr>
<th>項目</th>
<th>Data</th>
<th>α</th>
<th>Acting Angle</th>
<th>Force (tf)</th>
<th>Mt (tf-m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>波</td>
<td>8.6sec</td>
<td>110°</td>
<td>70°</td>
<td>114.0</td>
<td>-</td>
</tr>
<tr>
<td>4.5m</td>
<td>Wind</td>
<td>10m/s</td>
<td>110°</td>
<td>92°</td>
<td>23.2</td>
</tr>
<tr>
<td>Current</td>
<td>0.976m/s</td>
<td>76°</td>
<td>-137.5</td>
<td>+462</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-3.0</td>
<td>-24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: Angle from bow (°)

3.2.3 定常波漂流力の推算結果

実船の漂流時における波周期が観測されておらずウネリとして記録されているため、米坂海象アトラス（5巻：南太平洋）(15)から当該水域の季節別卓越波周期を求め、計算波周期を9秒前後とした。

風圧力及び定常波漂流力により船体が漂流を行ったものとして、以下のとおり漂流速度に対応する流圧力との釣り合いから定常波漂流力を推算した。

Table 5 Current force coefficient

<table>
<thead>
<tr>
<th>θ</th>
<th>h/d</th>
<th>h'v/d.1</th>
<th>h'v/d.12</th>
<th>h'v/d.13</th>
<th>h'v/d.14</th>
<th>h'v/d.20</th>
<th>h'v/d.30</th>
<th>h'v/d.50</th>
<th>h'v/d.70</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>2.42</td>
<td>2.19</td>
<td>1.84</td>
<td>1.81</td>
<td>1.27</td>
<td>0.86</td>
<td>0.81</td>
<td>0.81</td>
<td>0.81</td>
</tr>
<tr>
<td>20</td>
<td>4.95</td>
<td>4.43</td>
<td>3.92</td>
<td>3.11</td>
<td>2.48</td>
<td>1.84</td>
<td>1.81</td>
<td>1.81</td>
<td>1.81</td>
</tr>
<tr>
<td>30</td>
<td>7.50</td>
<td>6.56</td>
<td>5.87</td>
<td>4.95</td>
<td>3.63</td>
<td>2.71</td>
<td>2.59</td>
<td>2.36</td>
<td>2.36</td>
</tr>
<tr>
<td>40</td>
<td>10.05</td>
<td>8.12</td>
<td>7.43</td>
<td>6.91</td>
<td>5.61</td>
<td>4.51</td>
<td>4.00</td>
<td>3.82</td>
<td>3.58</td>
</tr>
<tr>
<td>50</td>
<td>12.50</td>
<td>9.03</td>
<td>8.31</td>
<td>7.45</td>
<td>6.69</td>
<td>5.41</td>
<td>4.55</td>
<td>4.20</td>
<td>3.98</td>
</tr>
<tr>
<td>60</td>
<td>14.95</td>
<td>9.18</td>
<td>8.77</td>
<td>7.73</td>
<td>6.86</td>
<td>5.87</td>
<td>5.13</td>
<td>4.95</td>
<td>4.69</td>
</tr>
<tr>
<td>70</td>
<td>17.40</td>
<td>9.18</td>
<td>8.21</td>
<td>7.14</td>
<td>6.10</td>
<td>5.94</td>
<td>5.13</td>
<td>4.78</td>
<td>4.53</td>
</tr>
<tr>
<td>80</td>
<td>19.85</td>
<td>9.17</td>
<td>8.12</td>
<td>6.74</td>
<td>5.65</td>
<td>4.74</td>
<td>4.28</td>
<td>3.98</td>
<td>3.74</td>
</tr>
<tr>
<td>90</td>
<td>22.30</td>
<td>9.16</td>
<td>7.94</td>
<td>6.34</td>
<td>5.30</td>
<td>4.41</td>
<td>3.98</td>
<td>3.74</td>
<td>3.54</td>
</tr>
</tbody>
</table>

Table 6 Current force moment coefficient

<table>
<thead>
<tr>
<th>θ</th>
<th>h'v/d</th>
<th>h'v/d.1</th>
<th>h'v/d.12</th>
<th>h'v/d.13</th>
<th>h'v/d.14</th>
<th>h'v/d.20</th>
<th>h'v/d.30</th>
<th>h'v/d.50</th>
<th>h'v/d.70</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>0.120</td>
<td>0.077</td>
<td>0.068</td>
<td>0.045</td>
<td>0.031</td>
<td>0.021</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
</tr>
<tr>
<td>20</td>
<td>0.234</td>
<td>0.172</td>
<td>0.142</td>
<td>0.102</td>
<td>0.074</td>
<td>0.052</td>
<td>0.058</td>
<td>0.058</td>
<td>0.058</td>
</tr>
<tr>
<td>30</td>
<td>0.300</td>
<td>0.209</td>
<td>0.172</td>
<td>0.130</td>
<td>0.098</td>
<td>0.069</td>
<td>0.074</td>
<td>0.074</td>
<td>0.074</td>
</tr>
<tr>
<td>40</td>
<td>0.387</td>
<td>0.277</td>
<td>0.234</td>
<td>0.186</td>
<td>0.133</td>
<td>0.096</td>
<td>0.074</td>
<td>0.074</td>
<td>0.074</td>
</tr>
<tr>
<td>50</td>
<td>0.423</td>
<td>0.197</td>
<td>0.163</td>
<td>0.135</td>
<td>0.128</td>
<td>0.095</td>
<td>0.095</td>
<td>0.095</td>
<td>0.095</td>
</tr>
<tr>
<td>60</td>
<td>0.468</td>
<td>0.105</td>
<td>0.114</td>
<td>0.129</td>
<td>0.094</td>
<td>0.055</td>
<td>0.049</td>
<td>0.049</td>
<td>0.049</td>
</tr>
<tr>
<td>70</td>
<td>0.503</td>
<td>0.062</td>
<td>0.091</td>
<td>0.055</td>
<td>0.055</td>
<td>0.037</td>
<td>0.034</td>
<td>0.034</td>
<td>0.034</td>
</tr>
<tr>
<td>80</td>
<td>0.548</td>
<td>0.012</td>
<td>0.021</td>
<td>0.009</td>
<td>0.009</td>
<td>0.006</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>90</td>
<td>0.593</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Table 7 Condition of ship's drifting, weather and sea

<table>
<thead>
<tr>
<th>Item</th>
<th>Data</th>
<th>α a*</th>
<th>θ °</th>
<th>Acting Angle</th>
<th>Force (tf)</th>
<th>Mt (tf-m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>波</td>
<td>8.6sec</td>
<td>110°</td>
<td>70°</td>
<td>114.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4.5m</td>
<td>Wind</td>
<td>10m/s</td>
<td>110°</td>
<td>92°</td>
<td>23.2</td>
<td>-438</td>
</tr>
<tr>
<td>Current</td>
<td>0.976m/s</td>
<td>76°</td>
<td>-137.5</td>
<td>+462</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-3.0</td>
<td>-24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* : Angle from bow（°）

Table 8 Effect of wave period

<table>
<thead>
<tr>
<th>Wave period</th>
<th>α a*</th>
<th>θ °</th>
<th>Acting Angle</th>
<th>Force (tf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6 sec</td>
<td>110°</td>
<td>70°</td>
<td>114.0</td>
<td></td>
</tr>
<tr>
<td>8.8 sec</td>
<td>110°</td>
<td>70°</td>
<td>99.1</td>
<td></td>
</tr>
<tr>
<td>9.0 sec</td>
<td>110°</td>
<td>70°</td>
<td>88.5</td>
<td></td>
</tr>
</tbody>
</table>

Table 9 Drifting force coefficient (Effect of wave period)
Table 11 Drifting force coefficient (Effect of water depth)

<table>
<thead>
<tr>
<th>Depth</th>
<th>h/d</th>
<th>Q/ha</th>
<th>P(h/d)</th>
<th>GM</th>
<th>Td(sec)</th>
<th>Ts(sec)</th>
<th>Ks</th>
<th>K (8.8sec)</th>
<th>K-Ks</th>
<th>R(d)</th>
<th>R(0)</th>
<th>R(k)</th>
<th>Rγ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.79</td>
<td>1.10</td>
<td>2.00</td>
<td>4.85</td>
<td>9.92</td>
<td>10.92</td>
<td>21.84</td>
<td>0.75</td>
<td>0.64</td>
<td>0.64</td>
<td>0.42</td>
<td>0.00</td>
<td>0.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1.68</td>
<td>1.50</td>
<td>1.10</td>
<td>3.57</td>
<td>9.92</td>
<td>10.92</td>
<td>16.98</td>
<td>0.103</td>
<td>0.484</td>
<td>0.484</td>
<td>0.42</td>
<td>0.00</td>
<td>0.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1.57</td>
<td>1.50</td>
<td>1.40</td>
<td>2.62</td>
<td>9.92</td>
<td>10.92</td>
<td>16.92</td>
<td>0.127</td>
<td>0.484</td>
<td>0.358</td>
<td>0.42</td>
<td>0.00</td>
<td>0.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1.28</td>
<td>1.20</td>
<td>2.00</td>
<td>2.25</td>
<td>9.92</td>
<td>10.92</td>
<td>15.92</td>
<td>0.147</td>
<td>0.484</td>
<td>0.337</td>
<td>0.42</td>
<td>0.00</td>
<td>0.00</td>
<td>0.42</td>
</tr>
<tr>
<td>2.25</td>
<td>2.00</td>
<td>1.10</td>
<td>0.81</td>
<td>9.92</td>
<td>10.92</td>
<td>12.81</td>
<td>0.188</td>
<td>0.484</td>
<td>0.283</td>
<td>0.42</td>
<td>0.00</td>
<td>0.00</td>
<td>0.42</td>
</tr>
<tr>
<td>2.73</td>
<td>2.00</td>
<td>1.00</td>
<td>0.00</td>
<td>9.92</td>
<td>10.92</td>
<td>11.24</td>
<td>0.246</td>
<td>0.484</td>
<td>0.246</td>
<td>0.42</td>
<td>0.00</td>
<td>0.00</td>
<td>0.42</td>
</tr>
<tr>
<td>12.04</td>
<td>2.00</td>
<td>1.00</td>
<td>0.00</td>
<td>9.92</td>
<td>10.92</td>
<td>10.92</td>
<td>0.309</td>
<td>0.484</td>
<td>0.184</td>
<td>0.42</td>
<td>0.00</td>
<td>0.00</td>
<td>0.42</td>
</tr>
</tbody>
</table>

3.2.2 計算結果に対する考察

風圧力だけでは、報告された漂流速度にはならないことから、実船の漂流には定常波漂流力が寄与していることが明らかである。報告された風速、波高、漂流速度を用いて波周期をパラメータとして再現計算を行ったところ波周期が推定値約9秒に一致し、8.6秒の場合にほぼ釣り合うことがわかった。実船の報告では船首に10°の方向に漂流しているが、計算結果では漂流方向が76°となり若干大きかった。これは、浅水域の波漂流力モーメント係数の影響と思われる。

以下の計算結果を用いた考慮された採用式は、ほぼ妥当なものであると考えられる。

船体コンセプト及び波周期(8.6秒)を変えて波水を変化させた場合の定常波漂流力をFig.3に示す。なお、漂流方向は定常波漂流力の大小により、変動するが、ここでは海風に76°方向になるものとして計算している。この場合、基準の8.6秒の定常波漂流力より小さい場合は小くなる傾向がある。ただし、波の入射角の反対方より小さいことはない。本船の場合、浅水域での船体運動の漂流周期が長くなり横揺傾周期のずれが大きくなることから定常波漂流力は浅水域でも増加することなく波高であればh/dが変化しても、ほぼ一定であった。Fig.4に実船のh/d=2.80の状態で波周期と波高を変化させた場合の定常波漂流力を示す。波周期8秒以下で定常波漂流力は増加し、特に波波が高い場合は、大きな定常波漂流力となる。しかし、波波が高い場合には周期も長くなる傾向にある。実際にこのような定常波漂流力が発生するケースは少ないものと考えられる。

また、同一風速・同一水深の20knots、水深25mに対し波高、喫水を変化させた場合の船体漂流速度をFig.5に示す。この場合、喫水14.5〜15.0m(船速=1.72〜1.667)付近で最大1.27m/sとなっている。喫水10mの船体の間部はK-Ksの値が0.25をわずかに超えるため波波漂流力係数のR(s)成分がなくなり、喫水9.5mの定常波漂流力よりも小さくなるためである。喫水が10.5mになると波波漂流力係数のR(d)成分が増加して、再び定常波漂流力は増加している。
4. パナマックス船型の定常波漂流流及び漂流速度

世界的の海運界で汎用船型として知られている船型の一つにパナマックス船型がある。本船型は、パナマ運河の許容船幅（32.2m）を有する多目的のパラカートで世界中の海を航海している普通船型といえる。

機関故障による船体漂流・座礁の危険防止の観点から浅水域においてパナマックス船型の漂流問題に焦点を当て、風と波のある状況下でどのような漂流を行うかを推算し船舶運航者への指針を提示する。

4.1 パナマックス船型

一般的なパナマックス船型としてTable 12に示す諸元の船型を採用した。

Table 12 Principal particulars of Panamax Bulker

<table>
<thead>
<tr>
<th>Particular</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lpp</td>
<td>216.00m</td>
</tr>
<tr>
<td>B</td>
<td>32.2m</td>
</tr>
<tr>
<td>D</td>
<td>23.8m</td>
</tr>
<tr>
<td>d（Ballast）</td>
<td>6.95m</td>
</tr>
<tr>
<td>d（Full）</td>
<td>12.21m</td>
</tr>
<tr>
<td>Wind area（Ballast、Front）</td>
<td>692m²</td>
</tr>
<tr>
<td>Wind area（Ballast、Side）</td>
<td>2,953m²</td>
</tr>
<tr>
<td>Wind area（Full、Front）</td>
<td>522m²</td>
</tr>
<tr>
<td>Wind area（Full、Side）</td>
<td>1,817m²</td>
</tr>
<tr>
<td>GbM（Ballast）</td>
<td>5.62m</td>
</tr>
<tr>
<td>GbM（Full）</td>
<td>2.55m</td>
</tr>
</tbody>
</table>

4.2 推算条件

一般に機関故障は、機関操作を行う入出港操船時に発生する可能性が高いと考えられる。また、入出港操船は、通常、浅水域で行われるため漂流が発生しタグボートの支援が緊急に得られない場合には座礁事故にもつながる可能性がある。入出港操船が行われる海気象条件は、一般に風速15m/s、波高1.5～2.0mで、アプローチ水域の水深は、h/d=1.20程度（満載入港時）であることが多い。ここでは、上記のことを考慮してTable 13のとおり推算条件を設定した。

Table 13 Calculation condition

<table>
<thead>
<tr>
<th>Condition</th>
<th>Ballast（h/d=2.11）</th>
<th>Full（h/d=1.20）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind velocity</td>
<td>15m/s</td>
<td></td>
</tr>
<tr>
<td>Wave height</td>
<td>2.0m</td>
<td></td>
</tr>
<tr>
<td>Wind and wave direction</td>
<td>Same direction</td>
<td></td>
</tr>
<tr>
<td>Kind of wind and wave</td>
<td>Regular</td>
<td></td>
</tr>
<tr>
<td>Depth of water</td>
<td>14.65m</td>
<td></td>
</tr>
</tbody>
</table>

4.3 推算結果

推算にあたり、問題となるのは風と波の入射角すなわち定常漂流状態における船体姿勢であるがパナマックス船型は、実船の船型と類似船種であることを利用して入射角が100°～110°の範囲にあるとする初期条件を与え、上記風速、波高及び波周期8秒の条件で漂流速度を変化させて流圧力と釣り合うときの船体姿勢を求めた。その結果、風と波の入射角は、ほぼ100°と算定された。パラスト状態及び満載状態においてh/d及び波周期をパラメータとして行った定常波漂流流の推算結果をFig.6及びFig.7に示す。
なお、この場合、定常波漂流力の変化により漂流方向も変化するが、ここでは一様に 74° 方向に漂流するものとして計算を行った。また、漂流速度の計算結果を Fig.8（パララスト状態）及び Fig.9（満載状態）に示す。推算結果をみるとパララスト状態の場合は波周期が 9 秒までは、h/d にかかわらず定常波漂流力は、ほとんど同値で 10 秒以上 の波周期になると K-Ks が 0.25 以下となり、h/d の影響が出てくる。特に h/d=1.2 の場合は Table 14 に示されるとおり波周期 12 秒で急激に波漂流力係数が増加している。波周期の影響をみると 9 秒付近が最小で、9 秒を境に周期が減少あるいは増加するのに伴い定常波漂流力が増加している。ただし h/d=3.0 の場合は 9 秒以上でも定常波漂流力は増加せず、ほぼ一定である。漂流速度をみると、定常波漂流力と同じ傾向であるが、h/d の影響による流圧力の違いが現れている。最大の漂流速度は h/d=1.2、波周期 12 秒で 1.34m/s (2.1knots) である。

満載状態では、h/d の影響がほとんど現れず同一の定常波漂流力となる。これは、h/d にかかわらず K-Ks が 0.25 以上となり波漂流力係数が深水時の値をとるからである。波周期の影響をみると 6 秒で最大値をとり波周期が増加すると徐々に減少し 11 秒以上では定常波漂流力が 1 tonf 以下となる。漂流速度は h/d=3.0、波周期 5 秒で 1.14m/s (2.2knots) である。

定常波漂流力に対する船体コンディションの影響をみると波周期が 10 秒以下では満載状態の方がパララスト状態より大きく、11 秒以上では逆にパララスト状態の方が大きい。
5. むすび

浅水域において同一方向の風と波により漂流する船体の漂流速度を試算し実船の漂流データとの比較を行い、採用計算式がほぼ妥当であることを確認した。また、運航数の多い船種であるバナマックスバルカーを対象として外力条件に応じた定常波漂流力、漂流速度を計算し船舶運航者に対する指標とした。

考察結果をまとめると以下の通りである。

- 採用計算式による計算漂流速度は実船データとほぼ整合している。
- 実船 (14万 DWT 型バルカー、バラスト状態、h/d=2.8) の定常波漂流力 (漂流方向の) は、波周期 8.6 秒、波高 4.5m で約 145tonf となる。
- バナマックスバルカーは、風速 15m/s、波高 2.0m、水深 14.65m の条件下ではバラスト状態のとき浅水域で波周期が 7 秒以下、11 秒以上で定常波漂流力が約 40tonf 以上になる。12 秒になると急激に定常波漂流力が増加する。準載状態のときは、9 秒以下で定常波漂流力が 40tonf 以上になる。
- バナマックスバルカーは、風速 15m/s、波高 2.0m、水深 14.65m の条件下において準載状態及びバラスト状態に波の周期によっては漂流速度が 2knots を超える場合がある。
- 定常波漂流力は、船体横揺れ周期の影響を受け、横揺れ周期と波周期が近い場合には急激に大きくなる。
- 風と波の入射方向が異なる場合は、釣り合い計算を別途行い、漂流方向を決定する必要がある。

謝辞

最後に、本研究の示唆をいただいた日本郵船株式会社の小川順也船長に深謝いたします。

参考文献

(2) 田: 規則波中の二次元体に働く漂流力について, 関西造船学会論文集, No.152, pp.69-78, 1974.3
(3) 野尻等: 規則波中の 2 次元浮体に働く漂流力に関する研究, 西部造船会報, No.51, pp.131-152, 1976.3
(4) 水野: 漂流波高に及ぼす粘性影響に関する一考察, 関西造船学会論文集, No.103, pp.75-83, 1976.12
(7) 安藤: 規則波中における漂流力について, 西部造船会報, No.52, pp.45-58, 1976.12
(9) 朝長: 漂流波の周波数特性に作用する波漂流力の計測, 関西造船学会報, No.59, pp.33-42, 1980.3
(12) 星野: 三角形タンカーの波漂流力と漂流運動, 西部造船会報, No.103, pp.263-272, 2002.3
(15) U.S. NAVY: Marine Climatic Atlas of the World (Volume V), South Pacific Ocean

質疑応答

定兼廣行 (神戸大学):
この問題は、大型船離着桟時の必要タグボート曳引きの推定にとって重要であり、著者の視点に同感です。今後の研究進展に期待します。

津田正典:
微風時の船体運動に対する波の影響について更に検討が必要であると考えます。