Reduction of Aircraft Passing Frequencies by Traffic Flow Division

Osamu AMAI and Sakae NAGAOKA

Abstract
RVSM, which is the vertical separation minimum reduced from 2,000 ft to 1,000 ft at flight levels (FL) between 290 and 410 inclusive, was implemented on 30 September 2005 within the Japanese domestic airspace for efficient aircraft operation. Prior to the implementation, safety assessment for the airspace in assumed RVSM environments was carried out using the collision risk model.

As a result of the assessment carried out in 2004, an estimate of collision risk averaged for whole target airspace met a maximum allowable level of collision risk, i.e. 2.5×10^{-9} [accidents / flight hour], called the technical target level of safety (TLS). However, a collision risk value for G581 route didn’t meet the TLS. The G581 route system was restructured for reducing aircraft passing frequencies by traffic flow division. It’s important to investigate the change in passing frequency values of the restructured airspace. Using flight progress data, the passing frequencies for the G581 route system were estimated every month. The results obtained are as follows.

(1) An estimate of the collision risk after the restructuring for the G581 meets TLS.

(2) The average passing frequency of post-restructuring is one twentieth of that of pre-restructuring.

Keywords: air traffic control, safety assessment, RVSM, collision risk, route restructuring

キーワード：航空交通管制、安全性評価、短縮垂直間隔、衝突危険度、経路改編

1. はじめに
航空交通管制では、航空交通の安全および効率的な運航を確保するために、航空交通管制官（以後、管制官と呼ぶ）が確保すべき航空機同士の最小の間隔（管制間隔）の基準を定めている。

平成17年9月30日に日本の国内空域において、フライトレベル（FL）290（29,000 ft [1 ft = 0.3048 m] に相当）以上 FL410 以下の高度で高さ方向の管制間隔基準（垂直間隔基準）が 2,000 ftから1,000 ftに短縮された。

航空機には最も燃料効率の良い飛行高度（最適高度）が存在する。この短縮により高度選択の幅が広がり、より効率の良い航空機の運航が可能となる。

この短縮垂直間隔（Reduced Vertical Separation Minimum：RVSM）の導入に先立ち、国土交通省航空局の委託により、いくつかの仮定の下で導入後を想定した空域の安全性の事前評価を行ってきた。ここでは、RVSM 導入の手引書に従って、空域の安全性を衝突危険度モデル（Collision Risk Model）を用いて計算された衝突危険度（単位飛行時間あたりの事故件数の期待値）で評価する。そして、垂直間隔の喪失により航空機同士が衝突する事象を考える。この危険度には、高度計システムの誤差等に起因する技術的危険度（Technical Risk）とそれ以外

* 正会員 独立行政法人 電子航法研究所（〒182-0012 東京都調布市深大寺東町7-42-23） amai@enri.go.jp
* 正会員 独立行政法人 電子航法研究所（〒182-0012 東京都調布市深大寺東町7-42-23） nagaoka@enri.go.jp
の原因（管制官や操縦士の過誤など）に起因する運用危険度（Operational Risk）があるが、ここでは、技術的危険度のみを考える。

平成15年度に実施したRVSM導入の安全性の事前評価において、RVSMの導入が予定されている国内の全空域で平均した衝突危険度の推定値は、技術的危険度の最大許容値である目標安全度（Target Level of Safety：TLS）の値2.5×10^{-9} [件/飛行時間]を満たしていた。しかし、特定のルート（G581）における局所的な衝突危険度は目標安全度を満たしていないことがわかった。

そのため航空局では、G581でも目標安全度を満たすようにするため、RVSMの導入前の2005年2月17日にG581ルートシステムの交通流を分散させるように改編を行った。これは、衝突危険度モデルのパラメータのうち、進行方向で航空機がずれ違った頻度に係わる (=2頻度) 近接通過頻度（Passing Frequency）を軽減するための措置である。この改編により近接通過頻度が実際にどのように変化したのかを安全性の観点から調べることは重要である。

航空路の改編前後の近接通過頻度の違いを調べた例は、北太平洋航空路のRVSM導入前後の違いを調べた例[2]はあるが、交通流の分散による改編の例は日本になく、海外でも報告は見あたりない。

当該空域での近接通過頻度が目標安全度を満たすためにには、等価反航近接通過頻度と呼ばれる値が1.6 [機/飛行時間]以下である必要がある。本文では、ルートシステム改編後の近接通過頻度がこの値以下となっていることを確認する。

本論文では、まず衝突危険度について述べる。次に近接通過頻度の計算方法を説明し、ルートシステム改編の概要および観測対象機と使用データを示す。その後、ルート改編前後の近接通過頻度の推定結果を示し、改編後の値が許容値以下になっていることを確認する。

2. 衝突危険度

2.1 概念

衝突危険度モデルでは、簡単化のため、航空機の形状を直方体もしくは円柱と考える。航空機は予め管制機関により割り当てられた経路の中心線上を飛行することになっているが、実際には航法誤差や人
3. 近接通過頻度の計算

3.1 近接通過頻度の計算

ある航空機が同一経路上を垂直間隔だけ離れたフライトレベルを飛行する航空機と進行方向でずれ違う事象を隣接高度との近接通過と呼ぶ。

\[N_i^s(o/s) = \frac{2\Sigma(n_p^s(o/s))}{\Sigma H_i} \]

ここで \(n_p^s(o/s) \)、\(H_i \)はそれぞれ分割区間 \(i \) における近接通過回数と総飛行時間を表す。\(n \)は経路セグメントの総数である。

Fig.2 Concept of route segment

3.2 等価反航近接通過頻度

同航と反航の近接通過頻度の衝突危険度への関与の程度をまとめて把握できる量子として、等価反航近接通過頻度 \(N_i^s(c) \)がある。これは次式で計算できる。

\[N_i^s(c) = N_i^s(o) + \frac{K(o)}{K(s)} N_i^s(s) \]

本稿では文献(8)を参考にして、\(\lambda_s = 0.036 \) NM, \(\lambda_r = 0.032 \) NM, \(\lambda_x = 0.010 \) NM, \(|\vec{V}| = 960 \) knots, \(|\Delta V| = 28.9 \) knots, \(|\vec{V}| = 11.6 \) knots, \(\lambda_x = 1.5 \) knots とした。
(2)式から \(K(o) \)、\(K(s) \)の値は、それぞれ 1.02、1.64 となる。航空機のサイズ、進行方向および横方向の相対速度の値に対しては、NOPAC ルートでの推定値を用いたが、これらは欧米で用いられている値とさほど変わらない。
4. ルートシステム改編の概要
G581 ルートは三宅島と台湾方面を結ぶ航路である。Fig.3 に G581 ルートの概略図を示す。
G581 の交通流を分散させるため、G581 の南北にそれぞれ一方通行の平行航路（Y52 と Y57）を設けた。Fig.4 に G581 ルートシステム改編の概要を示す。

今回の解析では、平成 15 年度の評価時（2003 年の 1 年分のデータを使用）に特に近接通過頻度の高かった紀伊半島の南の TAPOP（位置通報点名）と奄美大島付近の POMAS（位置通報点名）の間の空域を評価の対象とした（Fig.3 参照）。

Fig.3 Outline of G581 route

Fig.4 Outline of route restructuring

5. 観測対象機と使用データ
観測対象は、G581 ルートのうち位置通報点 TAPOP と POMAS の間（2005 年 2 月 17 日以降は Y52、Y57、Y574 の関連位置通報点間も含む）を FL290 以上 FL410 以下で飛行したすべての航空機である。

近接通過頻度の計算には、2004 年 2 月から 2005 年 8 月までの飛行計画情報を用いた。
飛行計画情報からは、便名、機種名、出発／目的空港、飛行経路、位置通報点の通過時刻・高度など航空機の運航に関する様々な情報が得られる。ここでは、主に位置通報点の通過時刻および通過高度の情報を使用した。尚、飛行計画情報には、実際に飛行した時刻や高度が記載されている。

6. 近接通過頻度の評価結果
計算に際し、次の 2 つを仮定した。
(I) 実際のRVSM 導入時は各 FL の交通量の分布が異なるものと考えられるが、S_r のみが 1,000 ft になり、2,000 ft 間隔での分布がそのまま 1,000 ft 間隔に移行する。
(II) 航空機は、短縮垂直間隔の最低航空機システム性能要件（RVSM MASPS）を満たすと仮定する。
このとき当該機は RVSM の手引き書[i]の記載値 \(P_r(1000)=1.7 \times 10^{-8} \) を満たす。

6.1 等価反航近接通過頻度の最大許容値
衝突危険度が 2.5 \times 10^{-9} \text{ [件／飛行時間]} を満たすための等価反航近接通過頻度の最大許容値の値を計算する。(5)式を用いて(1)式を変形すると、(6)式となる。

\[
N_{ux} = P_r(S_r)P_r(o)N_{ey}(e)K(o)
\] \((6) \)

\(S_r =1,000 \text{ ft} \) とし、上記(II)の仮定から \(P_r(1000) = 1.7 \times 10^{-8} \) とする。\(P_r(o) \) は、1 年分のレーダーデータから求めた値で \(P_r(o) = 0.091 \) を使用する。\(N_{ux} = 2.5 \times 10^{-9} \text{ [件／飛行時間]} \)、\(K(o) = 1.02 \) を代入して \(N_{ey}(e) \) を計算すると、\(N_{ey}(e) \) の最大許容値は 1.6 \text{ [機／飛行時間]} となる。

6.2 近接通過頻度の推定結果
上記(I)の仮定の下で 2,000 ft 離れた高度を飛行する航空機対に対する近接通過頻度を求めた。計算に際し、以下のように行いたい。
(i) 航空機は位置通報点間を等速で飛行していると仮定する。
(ii) 飛行計画情報から正確な高度変更地点がわからないため、位置通報点間で高度の変更があった場合は、はじめの位置通報点にて高度の変更があったものと見做す。
(iii) 位置通報点上での近接通過は、重複計数を避けるために 0.5 回と計数。
(iv) 2 つの経路間を横切る飛行は無視。
Table.1 に等価反航近接通過頻度および飛行時間月毎に計算した結果を示す。G581 ルートシステム改編後（2005 年 2 月以降）については、4 本の
ルートの平均値を示した。これはG581、Y52、Y57、Y574の経路セグメント毎に計算した値を(4)式に代入して計算した。
改編前の2004年2月から2005年1月までの12ヶ月間の$N_x^+(e)$の平均値は3.96 [機/飛行時間]で、改編後の2005年3月から8月までの6ヶ月間の$N_x^+(e)$の平均値は0.20 [機/飛行時間]である。これらを比較すると、改編後の$N_x^+(e)$は改編前の20分の1に減少したことがわかる。

Table 1 Monthly equivalent opposite direction passing frequency

<table>
<thead>
<tr>
<th>Month</th>
<th>$N_x^+(o)$</th>
<th>$N_x^-(s)$</th>
<th>$N_x^+(e)$</th>
<th>H [flight hours]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb. 2004</td>
<td>4.03</td>
<td>0.018</td>
<td>4.06</td>
<td>2442.4</td>
</tr>
<tr>
<td>Mar. 2004</td>
<td>3.67</td>
<td>0.034</td>
<td>3.72</td>
<td>2783.1</td>
</tr>
<tr>
<td>Apr. 2004</td>
<td>3.29</td>
<td>0.018</td>
<td>3.32</td>
<td>2654.4</td>
</tr>
<tr>
<td>May 2004</td>
<td>3.60</td>
<td>0.018</td>
<td>3.63</td>
<td>2852.8</td>
</tr>
<tr>
<td>Jun. 2004</td>
<td>3.77</td>
<td>0.015</td>
<td>3.79</td>
<td>2739.1</td>
</tr>
<tr>
<td>Jul. 2004</td>
<td>3.43</td>
<td>0.019</td>
<td>3.46</td>
<td>2742.6</td>
</tr>
<tr>
<td>Aug. 2004</td>
<td>4.38</td>
<td>0.021</td>
<td>4.42</td>
<td>3116.2</td>
</tr>
<tr>
<td>Sep. 2004</td>
<td>4.40</td>
<td>0.024</td>
<td>4.44</td>
<td>3053.5</td>
</tr>
<tr>
<td>Oct. 2004</td>
<td>4.28</td>
<td>0.019</td>
<td>4.31</td>
<td>2784.6</td>
</tr>
<tr>
<td>Nov. 2004</td>
<td>4.38</td>
<td>0.020</td>
<td>4.41</td>
<td>3106.8</td>
</tr>
<tr>
<td>Dec. 2004</td>
<td>3.79</td>
<td>0.021</td>
<td>3.82</td>
<td>2777.2</td>
</tr>
<tr>
<td>Jan. 2005</td>
<td>4.07</td>
<td>0.027</td>
<td>4.11</td>
<td>2907.2</td>
</tr>
<tr>
<td>Feb. 2005</td>
<td>2.20</td>
<td>0.026</td>
<td>2.24</td>
<td>2678.7</td>
</tr>
<tr>
<td>Mar. 2005</td>
<td>0.18</td>
<td>0.012</td>
<td>0.20</td>
<td>2699.9</td>
</tr>
<tr>
<td>Apr. 2005</td>
<td>0.17</td>
<td>0.008</td>
<td>0.18</td>
<td>2561.8</td>
</tr>
<tr>
<td>May 2005</td>
<td>0.18</td>
<td>0.015</td>
<td>0.21</td>
<td>2776.6</td>
</tr>
<tr>
<td>Jun. 2005</td>
<td>0.19</td>
<td>0.013</td>
<td>0.21</td>
<td>2478.9</td>
</tr>
<tr>
<td>Jul. 2005</td>
<td>0.19</td>
<td>0.015</td>
<td>0.22</td>
<td>2895.1</td>
</tr>
<tr>
<td>Aug. 2005</td>
<td>0.17</td>
<td>0.014</td>
<td>0.20</td>
<td>3068.2</td>
</tr>
</tbody>
</table>

* A unit of $N_x^+(e)$ is [aircraft / flight hour]

Fig.5にG581ルートシステム改編の前後の接近通過頻度の変化を示す。図中には、同航、反航、等価反航接近通過頻度の値を示した。同航接近通過頻度$N_x^+(s)$の値は平均0.019 [機/飛行時間]と反航接近通過頻度$N_x^+(o)$に比べて小さい。このため、等価反航接近通過頻度$N_x^+(e)$への寄与は少なく、$N_x^+(o)$と$N_x^+(e)$のグラフは重なっている。
図中には、$N_x^+(e)$の最大許容値1.6 [機/飛行時間]の線を示した。改編後はこれを満たしていることが分かる。これにより、改編後のG581ルートシステムの衝突危険度は目標安全度2.5×10^{-9} [件/飛行時間]を満たすことが分かった。

Fig.5 Comparison between passing frequency before G581 route restructuring and that after the restructuring

7. 考察
7.1 2,000 ft 垂直間隔での衝突危険度
ルートシステム改編前のG581における衝突危険度は目標安全度を満たしていないと述べたが、これはあくまで1,000 ft間隔に短縮した後の話である。

念のため、2,000 ft 垂直間隔でのG581ルートの衝突危険度を推定する。参考文献(10)を参考にして、P_{2000}=3×10⁻¹⁰とする。$N_x^+(e)$は大きい面積もあり大きくなるように、Table 1 の最大値4.44 [機/飛行時間]を使用する。これらを他のパラメータと併せて(6)式に代入すると、$N_{as}=1.2 \times 10^{-12}$ [件/飛行時間]となる。これは、目標安全度2.5×10^{-9} [件/飛行時間]を満たす。

7.2 改編後の各ルートの交通量の割合
改編後は各ルートの交通量がどのように割合になっているかを調べた。2005年3月以前の各ルートにおける総飛行時間の6ヶ月間の平均値を求めた。
その結果、G581は4584.0時間、Y52は5441.5時間、Y57（Y574を含む）は6455.1時間で、割合はそれぞれ、28%、33%、39%であった。

8. まとめ
2005年9月30日に日本の国内空域において短縮垂直間隔基準が導入された。その導入に先立ち、衝突危険度を用いた安全性の事前評価を行った。平成15年度に行った評価において、対象空域全体の平均
值では衝突危険度は目標安全度を満たしていた。しかし、G581 ルートでは局所的に目標安全度を満たしていなかった。

G581 ルートでも目標安全度を満たすようにするため、2005年2月17日に航空局では交通流を分散させて近接通過頻度を減少させるように G581 ルートシステムの改編を行った。

本論文では、G581 ルートシステムにおける改編前後の近接通過頻度を推定し、ルート改編の効果および改編後の衝突危険度が目標安全度を満たしているか否かを調べた。2004 年 2 月から 2005 年8月までの飛行計画情報を用いて、近接通過頻度を推定した。その結果、次のことが分かった。
(I) 想定した短縮垂直間隔基準導入後の状況下で、改編後の G581 ルートシステムの衝突危険度は目標安全度を満たす。

(II) 改編後の等価反航近接通過頻度 $N_{ij}(e)$ の平均値は 0.20 [機/飛行時間] で、改編前の平均値 3.96 [機/飛行時間] の20分の1に近付いている。

(III) 2005年3月以降の G581、Y52、Y57（Y574を含む）の飛行時間の割合はそれぞれ、28%、33%、39%であった。

今回のルート改編で使用された一方通行経路を使用して等価反航近接通過頻度を減少させる方法は、有効であると考える。

今後は、以下のことを行っていきたいと考える。
(i) 想定した仮定が満たされているかどうか、2005年10月以降の飛行計画情報を用いて確認する。
(ii) 実際の運航では、管制官によるレーダー誘導などがしばしば行われているので、今後は飛行計画情報ではなくレーダーデータにより近接通過頻度を計算する。
(iii) 今回は垂直方向重畳確率の値として文献(1)の記載値である $P_z(1000)=1.7 \times 10^{-8}$ を用いたが、高度維持誤差等の解析により実際の垂直方向重畳確率の値を求める。

謝辞

データ収集の際にご協力頂いた国土交通省東京航空交通管制部および航空局の関係各位に感謝いたします。

参考文献

(2) 長岡栄・天井治：国内短縮垂直間隔導入に係る空域安全性基礎評価委託、電子航法研究所 受託研究報告書、March 2004
(3) 天井治・長岡栄：北太平洋航空路における近接通過頻度の長期的変化、日本航海学会論文集、111、pp.127-134、Sep. 2004
(5) Report of the Sixth Meeting of RGCS, ICAO RGCS-WP/158, chap.5, Montreal, Canada, 1988
(6) 天井治・長岡栄：航空路における垂直方向の近接通過頻度の推定、日本航海学会論文集、82、pp.61-68、March 1990
(7) U.S.A. : Assurance of Safe Reduced Vertical Separation Minimum Implementation for Asia and Pacific Oceanic Airspace (Revised to Include Considerations for GPS Equipped Aircraft), ICAO RVSM/IF2-WP10, Feb. 1999
(9) 天井治・長岡栄：衝突危険度による洋上複合間隔ルートの安全性評価－II. －NOPAC ルートの水平方向の衝突危険度－、日本航海学会論文集、95、pp.87-96、March 1997
(10) 長岡栄・天井治：衝突危険度による洋上複合間隔ルートの安全性評価－I. －NOPAC ルートの垂直方向の衝突危険度－、日本航海学会論文集、92、pp.319-327、March 1995

NII-Electronic Library Service