Applicability of Unsafe Ship-handling Situation Index to Marine Traffic Simulation

Masaru YASUDA, Kinzo INOUE

Abstract

The Unsafe Ship-handling situation (US) is known as an index that is able to estimate a potential risk of marine accident by calculating frequency of unsafe situation on maneuvering process. In our past study(1)(2)(3), we were able to find out the correspondence between a marine accident and an US. Actually, it get to use this index in a planning of harbor, traffic route and so on.

However, due to neglect of maneuver's difference, it needs a lot of simulator experiments. In addition, in a real time simulator experiment, it has some limitations such as estimation area, target ship and so on.

In this study, we tried to apply traffic simulation to US. Since an US is calculate by a ship’s motion (velocity, turn rate, lateral speed etc.) and maneuvering condition (rudder angle, engine motion, thruster etc.), we introduced MMG model to the traffic simulation. We tried to estimate a US by this traffic simulation and we were able to find out the correspondence between a marine accident and US just like the past study.

Keywords: Marine traffic engineering, Unsafe Ship handling situation, Marine accident,

キーワード：海上交通工学, 不安全操船状態, 海難事故

1. はじめに

不安全操船状態（US: Unsafe Ship-handling situation）は、操船に対する衝突・乗揚の危険性を表す指標である。国の航路整備計画や地方港湾の港湾計画などにおいては、計画または整備に伴う船舶交通の安全性を検討する一方で、その整備に係る費用便益を計ることが求められていることもあり、現在では、国の航路整備計画や港湾計画改訂に係わる検討において安全性及び期待事故費用を計る目的で広く利用されるようになった。

不安全操船状態を評価するには、操船シミュレータ装置などにより操船者が実操船を行い、その操船過程における舵、機関、タグ、スラスターなど操作状態及び操船の結果として現れる速度、回頭角速度、横流れ速度などの運動状態を抽出し、これを入力条件として一定時間断面の予測航跡を推定して、その予測航跡の他船、護岸、浅瀬などに対する衝突判定の有無から不安全操船状態を検出する。

この場合、人間が操船することに伴う操船のばらつきをなくすため相当数の実験を行う必要がある一方で、リアルタイムシミュレーションは実時間を要するため、その実施ケースは極めて限られた条件、範囲で行わざるを得なかった。著者らもこれまで来島海峡航路をモデルとして操船シミュレータ実験により不安全操船状態を評価し、海難発生位置や頻度との対応(1)(2)(3)を試みたが、その対象範囲は狭部に
限り、船型も限定して行った。ある特定の条件に対する操船の危険性を評価するうえでは、このような手法は有効かつ適当なものと考えられるが、不特定多数の船に対する評価としては限界がある。
そこで、本研究ではこのような問題を解決するため、海上交通流シミュレーションにより交通流を再現させ、これに不安全操船状態評価の適用を試みた。

2. 不安全操船状態の概念
Fig.1に不安全操船状態の概念を示す。
不安全操船状態は、潜在的操船水域(1) (Potential Area of Water, PAW) の概念を導入し、時々刻々の操作状態、運動状態から、現在の状態が過去の結果の予測状態を計算する。対象操船のその時の条件に応じた最短停止時間 (Short Stopping Time, SST) が、他船や陸地、津波に衝突するまでの余裕時間 (Time To Collision, TTC) をを超える場合に不安全操船状態と判断される。

3. 名古屋港における海上交通の再現
3.1 運動モデルの導入
現状の海上交通流シミュレーションは、各ウェイポイント (変針点) で結ばれた経路を設定した速力で移動する質点の動きであって、その間の船の操作及び運動は考慮されていない。最近のシミュレーションでは、TKモデルなどにより変針時の回頭をより現実に近づけたものもあるが、リアルタイムシミュレーションのように船の操作の結果として運動を再現する海上交通流シミュレーションは、多大な計算時間を要することと、全船の動きを運動モデルで再現するためには、様々な船の運動モデルデータベースが必要であることなどから汎用的ではなかった。
しかしながら、近年のコンピュータの計算速度は目覚しく向上し、また、シミュレータによる検討が主流となってきたことから、様々な種類の船の運動モデルが蓄積されるようになり、海上交通流シミュレーションへの運動モデルの導入を可能にした。
運動モデルは、一般的なMMGモデル(4×5×6)を用い、入力条件は変針時及び避航時の変針角と速力とした。与えられた変針角に対する舵角は、オートバイロット機能を利用し、原針路と目標針路との差及びそのときの回頭角加速度、並行偏位量から変針に必要な舵角量を求めた。また、機関は目標速力 (ウェイポイント間で設定された航行速力) に必要なエンジン回転数を与え、所定の速力を得るようにした。

3.2 運動モデルによる交通流の再現
海上交通流シミュレーションによる交通流の再現は、Fig.2に示すように実態の船舶航路データから、シミュレーション上、船舶が航行する通航経路をモデル化し、各経路において発生する船舶の速力・隻数を実態データから設定する。シミュレーションの実行では、各経路において設定された隻数に基づき指数分布にしたがって乱数発生させたが、その際、航行管制を踏まえ20,000 トン以上(現状は40,000 トン以上)の船舶の発生がある場合には、航路内で500 トン以上の船舶と行き会わないよう発生時間を遅らせるようにした。

![Fig.1 Concept of Unsafe Ship-handling situation](image)

![Fig.2 Flowchart of situation design](image)
(1) 名古屋港における船舶交通実態データ

名古屋港の交通流を再現するにあたり、平成10年に名古屋港管理組合において実施された船舶交通実態調査によっての航跡データを利用した。船舶実態調査は、名古屋港港域内を航行する船舶を対象に2日間にわたって実施されたものである。

(2) 通航経路帯

船舶航行実態調査による航跡データに基づき、船型及びOD（O：Origin、D：Destination）などによりグループ化された通航経路帯を作成した。通航経路帯はウェイポイント間を直線状の経路で結んだものので、その幅はグループ化された航跡群の平均航跡位置から標準偏差の2倍（±2σ）を考慮した。また、その間の通航速度は航跡群の平均速度とした。

(3) 交通流の再現

海上交通流シミュレーションによる再現は、航行実態調査時の船型区分を踏まえTable1に示すような13区分において計算した。

Table 1 Classification of Ship size

<table>
<thead>
<tr>
<th>Ship size</th>
<th>数値範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td>〜20GT</td>
<td>0〜100GT</td>
</tr>
<tr>
<td>20〜50GT</td>
<td>100〜200GT</td>
</tr>
<tr>
<td>50〜100GT</td>
<td>200〜500GT</td>
</tr>
<tr>
<td>100〜300GT</td>
<td>500〜1000GT</td>
</tr>
<tr>
<td>300〜500GT</td>
<td>Over 1000GT</td>
</tr>
</tbody>
</table>

シミュレーションでは、1日の時間変動を考慮し48時間を実施した。名古屋港は港の性質上、朝にラッシュ時間帯があり、主要航路とする東航路では6、7時頃にピークがあることがわかる。西航路では東航路に見られるようなラッシュ時間帯は見られない。

なお、20,000トン以上（現在は40,000トン）の管制定船が、航路内において管制対象船である500トン未満の船舶と見合い関係となった場合には実情を踏まえ管制船に優先権を与えるものとした。

Fig.3 Number of passage ship on Higashi Route

Fig.4 Actual Traffic Wake (6〜9hr, above 100GT)

Fig.5 Simulation Traffic Wake (6〜9hr, above 100GT)
4. 不安全操船状態評価の適用

4.1 不安全操船状態による操船危険性評価

シミュレーションによって再現された各船に対し、不安全操船状態を評価した。評価対象は、朝のラッシュ時間帯を含む6時から9時とした。Fig.3に示した実測航跡数より、名古屋港の主要航路である東航路では、朝のラッシュ時間帯に顕著するようだが見られるが、西航路においてはこのようなラッシュはなく海難データとの対応を取るだけの十分な航跡データが得られないことから、ここでは東航路を出入りする100トン以上の船舶を評価対象とした。

Fig.6に100トン以上の入港船における不安全操船状態を例として示す。また、Fig.7は他船に対して不安全操船状態となった場合の予測航跡が他船と衝突した位置を示したものである。名古屋港は、東航路を主航路として西航路及び北航路から構成される。そして、これらはFig.7に示すように金城水域で交差する。港則法では、その優先順位は東航路、西航路、そして北航路の順に定められているが、航跡する時間帯においては船舶が頻繁に合流・交差する危険な水域として知られている。

東航路を航行する船の不安全操船状態をみると、各時間帯における操作状態と運行モデルから計算された運動状態から推定される予測航跡は、Fig.7のように2航路が交差・合流する金城交差部で多く発生していることがわかる。

4.2 名古屋港港域における海難発生状況

不安全操船状態と海難事故の対応をとるため、名古屋港における海難発生状況について調査した。Table 2に過去10年間（1994年〜2005年）において名古屋港港域内で発生した海難事故を示し、Fig.8に海難位置を示す。名古屋港では過去10年間に24件（40隻）の海難事故が発生している。

本研究では、名古屋港の主航路である東航路を通航して入出港した船舶を評価の対象としたため、海難についてもFig.8の点線で囲まれた東航路航路に係るものに限定した。すなわち、西航路付近で発生したものや港奥で発生した海難は対象外とした。したがって、対象海難事故はFig.8の点線で囲まれた11件（19隻）とした。
Table 2 Number of Accident in Nagoya Port
(1994-2005)

<table>
<thead>
<tr>
<th>No.</th>
<th>Type of Marine Accident</th>
<th>Date</th>
<th>Type of Vessel</th>
<th>Size of Vessel (GRT)</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tanker</td>
<td>1997/4/29</td>
<td>Cargo</td>
<td>299</td>
<td>35.017</td>
<td>136.850</td>
</tr>
<tr>
<td>2</td>
<td>Cargo</td>
<td>1998/6/29</td>
<td>Cargo</td>
<td>499</td>
<td>35.017</td>
<td>136.867</td>
</tr>
<tr>
<td>3</td>
<td>Cargo</td>
<td>1999/1/20</td>
<td>Cargo</td>
<td>8,280</td>
<td>35.017</td>
<td>136.867</td>
</tr>
<tr>
<td>4</td>
<td>Cargo</td>
<td>1999/4/15</td>
<td>Cargo</td>
<td>2,498</td>
<td>35.017</td>
<td>136.833</td>
</tr>
<tr>
<td>5</td>
<td>Tanker</td>
<td>1999/5/7</td>
<td>Cargo</td>
<td>15,453</td>
<td>35.017</td>
<td>136.833</td>
</tr>
<tr>
<td>6</td>
<td>Cargo</td>
<td>1999/9/20</td>
<td>Cargo</td>
<td>8,306</td>
<td>35.017</td>
<td>136.833</td>
</tr>
<tr>
<td>7</td>
<td>Tanker</td>
<td>2000/1/20</td>
<td>Cargo</td>
<td>1,599</td>
<td>35.017</td>
<td>136.833</td>
</tr>
<tr>
<td>8</td>
<td>Cargo</td>
<td>2000/2/1</td>
<td>Cargo</td>
<td>4,879</td>
<td>35.015</td>
<td>136.802</td>
</tr>
<tr>
<td>9</td>
<td>Other</td>
<td>2000/2/1</td>
<td>Cargo</td>
<td>84</td>
<td>35.015</td>
<td>136.802</td>
</tr>
<tr>
<td>10</td>
<td>Cargo</td>
<td>2000/3/22</td>
<td>Cargo</td>
<td>147</td>
<td>35.022</td>
<td>136.827</td>
</tr>
<tr>
<td>11</td>
<td>Cargo</td>
<td>2001/1/11</td>
<td>Cargo</td>
<td>18,337</td>
<td>35.022</td>
<td>136.827</td>
</tr>
<tr>
<td>12</td>
<td>Cargo</td>
<td>2001/1/21</td>
<td>Cargo</td>
<td>2,413</td>
<td>35.062</td>
<td>136.858</td>
</tr>
<tr>
<td>13</td>
<td>Cargo</td>
<td>2001/2/21</td>
<td>Cargo</td>
<td>2,413</td>
<td>35.062</td>
<td>136.858</td>
</tr>
<tr>
<td>14</td>
<td>Cargo</td>
<td>2001/2/23</td>
<td>Cargo</td>
<td>1,540</td>
<td>35.062</td>
<td>136.858</td>
</tr>
<tr>
<td>15</td>
<td>Cargo</td>
<td>2002/3/10</td>
<td>Cargo</td>
<td>109</td>
<td>35.020</td>
<td>136.808</td>
</tr>
<tr>
<td>16</td>
<td>Cargo</td>
<td>2002/4/23</td>
<td>Cargo</td>
<td>19</td>
<td>35.020</td>
<td>136.808</td>
</tr>
<tr>
<td>17</td>
<td>Cargo</td>
<td>2002/5/17</td>
<td>Cargo</td>
<td>747</td>
<td>35.042</td>
<td>136.875</td>
</tr>
<tr>
<td>18</td>
<td>Cargo</td>
<td>2002/6/23</td>
<td>Cargo</td>
<td>11,573</td>
<td>35.042</td>
<td>136.875</td>
</tr>
<tr>
<td>19</td>
<td>Cargo</td>
<td>2002/7/23</td>
<td>Cargo</td>
<td>3,743</td>
<td>35.062</td>
<td>136.880</td>
</tr>
<tr>
<td>20</td>
<td>Cargo</td>
<td>2003/2/18</td>
<td>Cargo</td>
<td>499</td>
<td>35.062</td>
<td>136.880</td>
</tr>
<tr>
<td>21</td>
<td>Cargo</td>
<td>2003/3/12</td>
<td>Cargo</td>
<td>25,451</td>
<td>35.025</td>
<td>136.848</td>
</tr>
<tr>
<td>22</td>
<td>Cargo</td>
<td>2003/3/17</td>
<td>Cargo</td>
<td>9,030</td>
<td>35.025</td>
<td>136.792</td>
</tr>
<tr>
<td>23</td>
<td>Cargo</td>
<td>2003/5/31</td>
<td>Cargo</td>
<td>9,413</td>
<td>35.025</td>
<td>136.792</td>
</tr>
<tr>
<td>24</td>
<td>Cargo</td>
<td>2003/10/3</td>
<td>Cargo</td>
<td>19</td>
<td>34.972</td>
<td>136.803</td>
</tr>
<tr>
<td>25</td>
<td>Cargo</td>
<td>2003/10/22</td>
<td>Cargo</td>
<td>199</td>
<td>34.972</td>
<td>136.803</td>
</tr>
<tr>
<td>26</td>
<td>Cargo</td>
<td>2004/5/17</td>
<td>Cargo</td>
<td>494</td>
<td>35.000</td>
<td>136.800</td>
</tr>
<tr>
<td>27</td>
<td>Cargo</td>
<td>2005/7/15</td>
<td>Cargo</td>
<td>6,743</td>
<td>35.000</td>
<td>136.800</td>
</tr>
<tr>
<td>28</td>
<td>Cargo</td>
<td>2005/10/22</td>
<td>Cargo</td>
<td>7,660</td>
<td>35.023</td>
<td>136.795</td>
</tr>
<tr>
<td>29</td>
<td>Cargo</td>
<td>2005/11/17</td>
<td>Cargo</td>
<td>8,133</td>
<td>35.023</td>
<td>136.795</td>
</tr>
<tr>
<td>30</td>
<td>Cargo</td>
<td>2006/1/20</td>
<td>Cargo</td>
<td>8,282</td>
<td>35.023</td>
<td>136.795</td>
</tr>
</tbody>
</table>

Fig. 8 Marine Accident in Nagoya Port

4.3 不安全操船状態と海難事故の対応
4.3.1 海難発生率

海難発生率の推定によると、母数となる 10 年間の通航隻数は、東航路を航行した 500 トン以上の年間通航隻数（2004.7～2005.6）を基準とし、これを 10 倍して 10 年間の通航隻数を仮定した。

Table 3 に海難発生率を示す。年間の東航路通航隻数データ（提供：名古屋港管理組合）の船型区分にしたがい、各船型における海難隻数を整理した。この海難隻数を 10 年間の通航隻数で除して海難発生率を求めた。

Table 3 Occurrence Ratio of Marine Accident

<table>
<thead>
<tr>
<th>Type of Vessel</th>
<th>Number of Marine Accident (for 10 years)</th>
<th>Number of Vessels (for 10 years)</th>
<th>Occurrence Ratio of Marine Accident</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 500GT</td>
<td>5</td>
<td>102,590</td>
<td>4.874E-05</td>
</tr>
<tr>
<td>- 5,000GT</td>
<td>5</td>
<td>101,340</td>
<td>4.934E-05</td>
</tr>
<tr>
<td>- 10,000GT</td>
<td>3</td>
<td>32,240</td>
<td>9.305E-05</td>
</tr>
<tr>
<td>10,000GT-</td>
<td>6</td>
<td>83,980</td>
<td>7.145E-05</td>
</tr>
</tbody>
</table>

Total 19 320,150 5.935E-05

Offer: Nagoya Port Authority
4.3.2 不安全操船状態発生率との対応

Fig.9 に不安全操船状態発生率と海難発生率を示す。図からわかるように不安全操船状態の発生率は、船が大きくなるにつれ増加する傾向が見られる。また、海難事故率についても、10,000 トンまでの船型においては、不安全操船状態と同様の増加傾向が見られ、両者の間にほぼ10の一定の比の関係が見られる。

海難事故は、10,000 以上の船型ではむしろ減少しているが、このことは、名古屋港は強制水先区であり、10,000 トン以上の船舶においては、水先後の乗船者が義務付けられていること。また、東航路は名古屋港海上交通センターによる管制水路があり、20,000 トン（現在は50,000 トンを超える大型船は、管制船となることから、500 トン以上の船舶との行き会いがないことなど、その航行に対し特別な安全措置が取られている情報がある。

Fig.9 Correspondence between Marine Accident and Unsafe Ship-handling situation

4.4 切迫レベルによる評価

切迫レベル(1)を(1)式に示す。これは 0 から 1 の数値で求めることができ、得られた値が 0 に近いほど（すなわち、TTC ≈ SST）、本船が止まることのできる時間（SST）に極めて近いところで潜在的に衝突・乗揚危険があることを表し、危険を回避する余裕が高いことを意味する。一方、数値が 1 に近いほど SST に対し TTC が小さく危険を回避する余裕が小さく、危険に対する切迫レベルが高いことを意味する。

\[\text{Emergency Level} = 1 - \frac{TTC}{SST} \quad \cdots \cdots \cdots \quad (1) \]

Fig.10 から Fig.12 に入港時において不安全操船状態となった場合の予測航路が他船に衝突した位置とそのときの切迫レベルを示す。

Fig.10 に示す 500 トン未満の入港船では、高潮防波堤を過ぎた付近で多く現れているが、その値は 0.2 ～0.4 である。つまり、高潮防波堤よりかなり手前において避航操作した結果として、予測航路が出港船と衝突したものである。これは管制水路において小型船が管制船と出会った場合、実情の運用を踏まえシミュレーションでは小型船に避航義務を課している。小型船の大型船に対する避航操作の結果とて不安全な状態が航路内で多く発生したもので、高潮防波堤付近でその頻度が高く現れたのは、防波堤通過に向けて航路が収束し狭くなるためと考えられる。

一方、Fig.11 及び Fig.12 をみると、船型が大型になるほど金城交差部付近において多く発生し、切迫レベルも比較して高い値を示している。500 トン以上の船舶については、管制により大型船と行き合うことがなく、管制船は小型船に避航義務を課したため、500 トン未満の小型船で見られたような航路内での行き合いによる不安全操船状態の発生は少ない。ただし、管制航路を出航の航路、金城水路方面への変針操船の過程において金城交差部付近で航路からの出港船、西航路からの入港船と交差・合流することにより不安全操船状態が多く出現している。

名古屋港の航路のあり方を考える際、このような航路内の行き合いにおける操船の危険性や金城交差
部における交差・合流の危険性が常に指摘されるが、こうした名古屋港の航路問題についても、この海上交通流シミュレーションによる不安全操船状態では反映している。

5. おわりに

不安全操船状態の評価は、操船の危険性を表すことができる指標として広く利用されるようになってきた一方で、その評価には、操船シミュレータ実験による実操船を伴い評価海域の規模、評価船の数、検証パターンなどに制約をかけざるを得なかった。もちろん、特定の条件に対する操船の危険性を評価するうえでは十分であり適切な手法であるが、交通流の場を評価するうえでは、操船者の違いによるばらつきを平滑化するため、相当数の実験を行う必要があり限界があった。

本研究では、海上交通流シミュレーションによる操船の危険性評価の適用の可能性を見出すことができた。これにより、操船シミュレータによる特定の操船に対する危険性評価と海上交通流シミュレーションによる交通流の場に対する危険性評価などのように評価対象によって使い分けることが可能になる。

以下に本研究で確認できた事項を示す。

(1) 海上交通流シミュレーションに運動モデルを導入することにより、場に存在するすべての船舶からの操船危険性的評価が可能になった。
(2) 海上交通流シミュレーションでは、一定の避航モデルのもとで操船するため、航行環境の変化に伴う船舶交通や護岸、浅瀬等への潜在的乗場衝突危険性の違いをより明確に表すことができようになった。ただし、海上交通流シミュレーションの避航操船方法には、船の大きさは考慮されているが、操縦性の違いまでは考慮されていない。したがって、今後は操縦性を考慮した避航操船方法の研究を行う必要がある。
(3) 海難事故率との関連性については、10^4 以上の絶対値で対応が取れることが確認でき、より合理的な方法でペリリーヒの法則との対応を取ることができた。

なお、本研究では外力条件は考慮しなかったが、運動モデルを取り入れることにより、外力条件を加味した再現が可能になる。
参考文献

(1) 井上欣三，川瀬雅勇己，安田 克，臼井英夫，
　世良亘，瀬田広明，朴栄守，原大地，広野康平，増田憲司：不安全操船状態を指標とする操船の安全性評価モデル,関西造船協会論文集,第 241 号,pp.205-210,2004.3

(2) 安田　克，井上欣三，臼井英夫，広野康平：来島海峡航路における不安全操船状態の発生傾向と海難発生傾向との対応,日本航海学会論文集,第 113 号,pp.37-41,2005.9

(3) 安田　克，井上欣三，臼井英夫，富久義孝：来島海峡航路における乗揚海難発生率と不安全操船状態発生頻度との対応について,日本航海学会論文集,第 114,pp.25-30,2006.3

(4) 日本造船学会：第 3 回操縦性シンポジウム,昭和56 年 12 月

(5) 日本造船学会：操縦性研究の設計への応用－運動性能研究委員会第 12 回シンポジウムー,平成 7 年 12 月

(6) 本田啓之輔：操船通論（六訂版）,成山堂,2001.9

(7) 名古屋港管理組合,基本計画調査（名古屋港航路体系調査（現況調査））,平成 11 年 3 月