袋体を用いた船舶による液体輸送に関する基礎的研究－IV．

－ 縮尺が異なる袋体の静的な相似性について －

西野 好生*・久保 雅義**

A Basic Research of Fluid Transportation with Liquid Bag by Vessel－IV．

－The static similarity of the liquid bag of different scale factors－

Yoshio NISHINO and Masayoshi KUBO

Abstract

We confirmed the similarity between model bag and prototype bag which are planning to use for fluid transportation by vessel. It is difficult to apply the similarity lows for membrane material. Therefore, we carried out several size model experiments with same membrane material. In these experiments, deformation, tension, strain and pressure of membrane has been shown. According to the experimental results, static tension and strain on membrane of model bag were same as those of prototype bag, and static similarity low was cleared. And, experimental results can be clarified using the numerical model developed in this paper.

Keywords: Liquid bag, General cargo ship, Membrane, Static similarity

キーワード：液体バップ、貨物船、膜材、静的相似則

1．研究の背景と目的

我々は、水難や天災による災害時の対策や離島における慢性的な水不足の地域において水資源を効率よく輸送するため大型の袋体を用いた船舶輸送方法を提案した。このため、これまでの研究では船舶の動揺によって生じる袋体張力の特性をやや動揺によって船倉壁面に作用するスロッシング圧力の特性及び膜材のパネ定数の違いによる膜張力と膜歪の特性及び膜材の計測方法および袋体の積載状態について研究を行った。これらの実験からこのような輸送方法の有効性と確認でき、さらに実機を用いた模型実験方法についての注意すべき内容を確認できた。

一方、実機を設計する場合には一般的にその模型実験から得られる結果を基にフールド則などの相似則により換算することができる。しかし、本研究のよう膜材を使用した模型実験では構成する膜材の縮尺比率を他の模型の縮尺比率と合わせることは困難であり、その相似性が問題となる。また、膜構造物における過去の研究例においても膜材の変形有限や模型実験での相似則について明確に示された事例は見当らない。

そこで、本研究では膜材を用いた模型実験において同じ厚みを有する同一膜材を用いた縮尺比率の異なった模型の相似性を実験的に確認して明確にすることを目的とした。

2．実験方法

2.1 模型寸法

本研究では液体を入れた袋体を対象としているが、今回実験において、膜材そのものの静的な相似性を調べることを目的としているところを考慮するため、袋体全体の変形の影響を遮るため、袋体の側面および底面を鋼板で構成した鋼製タンクとして上面のみに膜材を使用した。また、上面の膜材はタンクと
ポルトで締結して密閉構造とした。Fig. 1 およびTable 1 に模型形状および寸法を示す。

模型は3種類の寸法とし、縮尺比率を1/4、1/2、1とした。使用した膜材の諸元を Table 2 に示す。膜材は、塩化ビニル樹脂で、膜材の厚みの相似性を確認するため、厚みが$t=0.5, 1, 2.0\text{mm}$の3種類とした。これらの膜材を鋼製タンク上に取り付けてタンク内に容積以上の水を注入することで(1)膜材の静的歪、(2)タンク内の増大水圧、(3)膜面変位を計測した。

Fig. 1 Shape of tank model

Table 1 Dimension of tank model

<table>
<thead>
<tr>
<th>Tank Size</th>
<th>S</th>
<th>M</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale n</td>
<td>1/4</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>Length L</td>
<td>0.15m</td>
<td>0.3m</td>
<td>0.6m</td>
</tr>
<tr>
<td>Width W</td>
<td>0.2125m</td>
<td>0.425m</td>
<td>0.85m</td>
</tr>
<tr>
<td>Height H</td>
<td>0.115m</td>
<td>0.23m</td>
<td>0.46m</td>
</tr>
<tr>
<td>Full capacity</td>
<td>3666cc</td>
<td>29325cc</td>
<td>234600cc</td>
</tr>
</tbody>
</table>

Table 2 Dimension of membrane

<table>
<thead>
<tr>
<th>Tank Size</th>
<th>S</th>
<th>M</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale n</td>
<td>1/4</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>Length L</td>
<td>0.15m</td>
<td>0.3m</td>
<td>0.6m</td>
</tr>
<tr>
<td>Width W</td>
<td>0.2125m</td>
<td>0.425m</td>
<td>0.85m</td>
</tr>
<tr>
<td>Thickness t</td>
<td>0.5, 1, 2.0, 5mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2 膜歪計測

膜面の歪ゲージの貼り付け位置をFig. 2 に示す。

Fig. 2 Position of strain gauge

2.3 水圧計測

給水によってタンク内に発生する増大水圧は圧力計を用いて計測するものとし、タンク壁面および膜面の水圧を計算するためFig. 3 に示す位置に配置した。水圧計は各縮尺比率の鋼製タンク壁面中央の深さ方向に3箇所、間隔に1箇所、膜面中央内側に1箇所配置して給水量に対する増大水圧を計測した。尚、膜材の下部の水圧は水圧計周囲に発砲材によるフロートを取り付けて常に膜面直下に浮かせた状態とした。

Fig. 3 Position of pressure sensor

2.4 膜面変位高さの計測

Fig. 4 に膜材の変位高さを計測する位置を示す。給水により膜面が膨らんだ時の膜面のタンク上端部からの変位高さ h は膜面中央 X4 を基準に縮尺比率 $n=1$(タンク L)で10cmの等間隔で横方向と縦方向の中心線上で計測した。縮尺比率 $n=1/2$(タンク M)と縮尺比率 $n=1/4$(タンク S)はそれぞれの縮尺比率に比例した等間隔とした。なお、膜面の変位高さは膜面直上に水平梁を設けて各計測点で膜面との距離をノギスを用いて変位を計測した。
2.5 タンクの給水率
実験は各縮尺比率の鋼製タンク上面に膜材を取り付けて密閉状態とした後に各タンクの容積以上の水を給水する方法とした。給水する水量は、それぞれのタンク容積に対して、102%、105%、108%、110%の4ケースとした。給水は各縮尺比率のタンクに容積の100%の水を満たせた後に、タンク壁面に設けた給水口から大型の注射器によって計量した増加水量分の水を注入する方法とした。尚、タンク内は水のみとし空気は排除している。

3. 実験結果
3.1 膜面の変形の相似性
3種類の縮尺比率のタンク内にタンク容積に対して100%以上の水を給水して膜材が膨らんだ状態での膜面中央部X4の変位をFig. 5(a)、膜面中央部端部X1の変位をFig. 5(b)に示す。横軸に各タンクの容積100%を基点とした増加給水率を示し、縦軸に各測点での膜面変位高さ(h)を示した。各図中の記号は○印はタンクL(n=1)、□印はタンクM(n=1/2)、△印はタンクS(n=1/4)の場合を示す。

この結果から、給水量の増加に伴って増加する膜面変位高さは各タンクの縮尺比率が1/4:1/2:1に対して膜面中央部(X4)は2.01:4.19:8.07、膜面中央端部(X1)は5.18:2.65:1.33となり、縮尺比率ほぼ同じ比率を示している。これは、全ての計測点でもほぼ同様の変位比率となっている。このことから、膜面の変形は、縮尺比率に比例することがわかった。

さらに、各縮尺比率のタンクの給水に対して膜材の変形形状が縦方向、横方向共に膜面中央を中心としてほぼ対称に変形していることから、その膜面の変形形状を確認した。Fig. 6にタンクL(n=1)の場合の給水率ごとの膜面高さhの結果を示した。Fig. 6はタンク横方向中央の各測点の結果を示した。また、図中の○印は給水率110%時の計測値、□印は給水率108%時の計測値、△印は給水率105%時の計測値、△印は給水率102%時の計測値を示した。さらに、各給水率における膜面中央部の膜面変位高さの計測値とタンク両側の上端部の高さを0とした真円の円弧の計算値を実線および破線で示した。

これらの結果によると膜面変位高さはいずれの給水率においても計算値より端部で膨らむ傾向があり多少の誤差はあると仮定して計算値と一致している。このことから、膜面の断面の変形形状はそれぞれの給水率により変形し、給水率ごとで一定の曲率半径を有する真円の円弧の一部として想定できることが確認できた。

3.2 膜材の引張り-圧特性
今回の実験で使用した3種類の膜材について、引張り荷重と膜歪の関係を調べた。尚、膜材はその製造方法により同じ材質でもその横断面と縦断面で特性が異なる場合があることから各膜材に対して横断面と縦断面の両方の特性を調べた。膜材の特性は、本研究の第3報で明らかのように膜材の引張試験において膜材の膜歪と圧ゲージの歪には差異が生じることから今回の実験においても荷重に対するゲー
ジ歪と膜歪の相関を調べることとした。さらに、使用した膜材の厚みの違いによる相関性を確認した。
Fig.7に膜材の横方向の引張荷重と膜歪特性能を示す。

Fig. 7 Character of membrane (Transverse)

図中の横軸に膜歪ε, 縦軸に単位幅あたりの引張荷重f_s(N/cm)を示した。図中の◇印は膜材の厚みが$t=3.2mm$, □印は$t=1.0mm$, △印は$t=0.5mm$の膜材の特性を示し、実線は各膜材の近似値を示す。表、各膜材の実験値の近似において、弾性特性を有する膜材料の引張特性は一般的に線形性を示すことから、多項式による近似とした。その結果、2次近似式によってほぼ膜材の特性が近似できたため膜材毎に2次式を用いた。

Fig. 7の結果から、今回の実験で使用した膜材については厚み$t=2.0mm$と$t=1.0mm$では試験の荷重範囲ではほぼ同じ特性のものであった。また、最も厚みの薄い$t=0.5mm$は荷重に対する膜歪が大きく、軟かい膜材であった。また、縦方向の引張特性は横方向の引張特性と大きな違いはなく、横方向と縦方向がほぼ同じ特性を示す模様であった。

Fig. 8にゲージ歪と膜歪の相関結果を示す。

Fig. 8 Character of strain gauge

この結果によると、厚み$t=0.5mm$の柔らかい膜材がゲージ歪と膜歪の差が大きくなり、約20倍の歪差が生じている。従って、実験での膜歪はそれぞれの膜材のゲージ歪と膜歪の関係式を用いて換算した。
また、各膜材のゲージ歪に対する膜歪と膜張力も膜材の厚みによる明確な相関性が見られない。

3.3 水圧特性

タンク内に容積以上の水を給水した場合に膜材が膨らんで膜材が水面を押し付ける力が増加水圧となってタンク壁面および膜材の下面に作用する。この増加水圧は、タンクの縮尺比率や使用する膜材の特性によって異なることが推測されるため、各タンクの縮尺比率に対する増加水圧の特性を調べた。Fig. 9に縮尺比率の違いによる増加水圧の結果を示した。

この図は、膜材の厚みが$t=1.0mm$, 縦水圧が110%の場合の膜面中央の増加水圧の結果であり横軸に縮尺比率n, 縦軸にタンク内の増加水圧P(kPa)を示した。

Fig. 9 Relations of water pressure and scale

この結果から縮尺比率の違いによるタンク内の増加水圧は、同じ厚みを有する同一の膜材を使用した場合にはタンクの縮尺比率が大きいほど、増加水圧が小さくなり、全ての膜厚の給水圧においても縮尺比率$n=1/4:1/2:1$に対して増加水圧の比率はほぼ14:7:3.5=4:2:1となっている。また、他の厚みの膜材を用いた場合や給水圧が異なった場合もほぼ同じ比率となっている。このことから、増加水圧は縮尺比率に反比例すると考えられる。

3.4 膜張力特性

タンク内に容積以上の水を給水した場合には、膜材が膨らむことで膜材には張りが生じて膜張力が発生する。そこで、同じ厚みを有する同一膜材を使用した場合の膜張力の違いについて縮尺比率の影響を調べた結果をFig. 10(a)とFig. 10(b)に示す。Fig. 10(a)は
膜材の厚みが$t=1.0\text{mm}$の場合のタンク横方向の結果であり、Fig. 10(b)はタンク縦方向の結果である。横軸に縮尺比率nを示し、縦軸にタンクの縮尺比率に対する膜材の単位幅当たりの膜張力の測定値f_s (N/cm)を示した。なお、膜張力f_sは膜面中央部の膜張力であり横方向は$T5$、縦方向は$L3$のゲージ歪を膜張力に換算した値である。

Fig. 10(a) Relations of membrane tension and scale (Transverse) $t=1.0\text{mm}$

Fig. 10(b) Relations of membrane tension and scale (Longitudinal) $t=1.0\text{mm}$

これらの結果から、同じ厚みを有する同一膜材を使用した場合の単位幅当たりの膜張力f_sは縮尺比率が異なってもほぼ同じ膜張力を示している。この傾向は他の厚みの膜材を用いた場合や給水率が異なった場合においても同様の傾向を示した。

このことから、同じ厚みを有する同一膜材を使用した場合の縮尺比率による膜材の単位幅当たりの膜張力は縮尺比率に関係なく一定となることがわかった。

3.5 膜張力の計算値と実験値の比較
3.5.1 膜面の円形モデル
タンク内の給水によって膨らんだ膜材の形状は、Fig. 6 での変形形状の確認によって、縦方向、横方向共に真円の円弧の一部として想定できる結果を示した。そこで、各縮尺比率における膜材の変形形状を真円の円弧として給水率ごとの膜頂高さの計測値から真円としてモデル化した円弧モデルをFig. 11 に示す。

Fig. 11 Circle model

図中の円は各タンクの膜形状を円弧としてモデル化した半径rを有した円を示す。図中の水平線は各タンクの上部面を示し、円弧と交差する幅はそれぞれのタンクの幅Wと計算による膜面円弧hである。また、hはタンク内に給水した場合の膜面の変位高さを示す。この円弧モデルによりタンクの縮尺比率が$1/4:1/2:1$に対して形状寸法を比較した結果をTable 3 に示す。

Table 3 Dimension of circle model

<table>
<thead>
<tr>
<th>Table 3 Dimension of circle model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circle</td>
</tr>
<tr>
<td>Longitudinal</td>
</tr>
<tr>
<td>Transverse</td>
</tr>
<tr>
<td>Scale</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>1/4</td>
</tr>
<tr>
<td>Tank Width W (mm)</td>
</tr>
<tr>
<td>212.5</td>
</tr>
<tr>
<td>Membrane Height H (mm)</td>
</tr>
<tr>
<td>202.4</td>
</tr>
<tr>
<td>Circular arc Length L (mm)</td>
</tr>
<tr>
<td>217.75</td>
</tr>
<tr>
<td>Radius (cm)</td>
</tr>
<tr>
<td>256.5</td>
</tr>
<tr>
<td>Center angle θ (deg)</td>
</tr>
<tr>
<td>402</td>
</tr>
</tbody>
</table>

この結果によると、円弧の曲率半径r、膜面円弧長Lの比率はタンクの縮尺比率とほぼ一致する。また、膜面円弧の中心角θは縮尺比率に関係なくほぼ等しくなる。従って、膜面の両端と円弧の中心点を結んだ扇形は相似形となることから形状寸法の相似則は相似寸法の縮尺比率に比例することになる。

一方、膜材の単位幅当たりの膜張力は実験結果から得られた膜頂高さhと円弧の膜面長さLの関係から膜歪εを計算しFig. 8 の各膜材の膜材特性から得られた近似式によって求める。

3.5.2 膜厚$t=1.0\text{mm}$の場合
Fig. 12 に円弧モデルを用いて算出した膜材の厚みが$t=1.0\text{mm}$、給水率が110％の場合の単位幅当たりの膜張力計算値と実験値を比較した結果を示す。Fig. 12(a)はタンク横方向中央の$T5$の膜張力、Fig. 12(b)はタンク縦方向中央$L3$の膜張力の結果を示す。図の横軸にはタンクの縮尺比率を示し、縦軸は膜材の
単位幅当りのT5とL3の膜張力f_5(N/cm)を示した。さらに、図中の△印は実験値、○印は計算値をそれぞれに示した。

Fig. 12(a) Calculate of membrane tension (Transverse)

Fig. 12(b) Calculate of membrane tension (Longitudinal)

これらの結果から、膜材に作用する単位幅当りの膜張力は実験値と計算値で多少の誤差は生じるものので、異なる縮尺比においてもその値は緩と横方向ともにほぼ一致している。従って、給水により膜材に生じる単位幅当りの膜張力は、円弧モデルによって求めた膜厚から膜材の弾性特性を用いて算出できるものと考えられる。一方、計算値と計算値の誤差については実験時の初期の膜の設置状態の微小な差によって給水時の膜歪が異なったことが考えられる。

3.5.3 膜厚t=2.0mmの場合

Fig. 13に円弧モデルを用いて算出した膜材の厚みがt=2.0mm、給水率が10%の場合の単位幅当りの膜張力計算値と実験値を比較した結果を示す。Fig. 13(a)はタンク横方向中央のT5の膜張力、Fig. 13(b)はタンク縦方向中央L3の膜張力の結果を示す。図の横軸にタンクの縮尺比率を示し、縦軸に膜材の単位幅当りのT5とL3の膜張力f_5(N/cm)を示した。さらに、図中の△印は実験値、○印は計算値をそれぞれに示した。

Fig. 13(a) Calculate of membrane tension(Transverse)

Fig. 13(b) Calculate of membrane tension(Longitudinal)

Fig. 13(a)は、横方向の実験値と計算値を示している。この結果から、膜材に作用する単位幅当りの膜張力は膜厚t=1.0mmと同様に実験値と計算値で多少の誤差は生じるものので、異なる縮尺比率においてもその値は緩横方向ともにほぼ一致している。また、膜材の発生張力は膜厚t=1.0mmと異なっているが、これはFig. 8で示したように膜材の弹性特性が異なっているためである。従って、給水により膜材に生じる単位幅当りの膜張力は、膜厚が異なっても円弧モデルによって求めた膜厚から膜材の弾性特性を用いて算出できると考えられる。

しかししながら、Fig. 13(b)に示すように縦方向の膜張力は実験値と計算値で縮尺比率がn=1/4とn=1の場合で大きな誤差が生じている。この原因は膜面の膨らみによる曲げ歪の影響があると考えられる。そのため、実験に際しては膜厚が厚く、縮尺比率が小さい場合には注意を要する。

3.6 増水水圧の計算値と実験値の比較

3.6.1 水圧の計算式

タンク内の膜面増加水圧Pは実験から得られた膜高さに対してTable 3に示した円弧モデルによる曲
率半径を用いて式(1)の球カクの式によって算出するものとする。
式(1)での各記号は、Fig. 14 に示すように、P は膜面圧力、t は膜材の厚み、σ は縦方向の膜材引張応力、σ は縦方向の膜材引張応力、r は縦方向の膜面曲率半径、T は横方向の膜面変曲率半径、T は単位幅当たりの横方向膜張力、T は単位幅当たりの縦方向膜張力である。

\[P = \frac{\sigma}{t} + \frac{\sigma}{t^2} \]

(1)

Fig. 14 Calculate model

3.6.2 膜厚 t=1.0mm の場合

Fig. 15 に式(1)を用いて算出した増加水圧の計算値と実験値を示す。Fig. 15 は膜材の厚み t=1.0mm で給水率が 110％の比較結果である。各図の横軸はタックの縮尺比率を示し、縦軸に膜面下の増加水圧 P5 (kPa) を示した。また、図中の○印は増加水圧 P5 の実験値、△印は計算値を示す。

Fig. 15 Calculate of membrane pressure P5 (t=1.0mm)

この結果では、膜面に作用する増加水圧はいずれの縮尺比率においても計算式によって算出した値が大きくなっているが、計算値と実験値はほぼ一致している。また、増加水圧は膜厚 t=1.0mm の場合よりも大きくなっている。これも膜張力の計算と同様にFig. 8 で示したように特異性の違いによるものである。従って、タックに給水して膜面が変形した状態の増加水圧は膜面の形状を円弧の円弧モデルとして膜材特性から求めた膜張力と膜面の曲率半径から球カクの式を用いて算出可能であり、膜材の厚みや特性が異なった場合においても算出が可能であると考えられる。

尚、これらの結果において計算値が大きくなっている原因としては、実験時に膜材をタック上面に取り付ける際に設置状態に余裕が生じるため、この微小な余裕によって給水時の膜歪が異なるものであると考えられる。

4. まとめ

今回の実験では、膜材を用いた実験について模型実験を行う場合に、膜材を縮尺比率で縮小化せずに膜材の同じ厚みを有する同一膜材を使用した場合の形状寸法、膜張力および圧力の相似則について確認を行った。また、実験の変形形態の結果から計
算によって膜張力と圧力を計算した結果と実験値を比較した。それらの結果を以下にまとめる。
①給水に伴って変形する膜材の形状寸法は縮尺比率に比例して変形し、その形状は真円の円弧の一部とほぼ一致することが確認できた。
②同じ材料による膜材でもその膜材の引張りと歪特性には厚みによる相異性は認められない。
③同じ給水量の場合に膜材の膜は、膜材の種類や縮尺比率に関係なく同じになる。
④単位幅当たりの膜張力は給水量が同じ場合でも膜材の特性によって異なり、同じ厚みを有する同一膜材の場合には縮尺比率が異なっても単位幅当たりの膜張力は変化しない。
⑤同じ厚みを有する同一膜材を使用した場合にタンク内に作用する増加圧縮は縮尺比率に反比例する。
⑥給水による膜張力と増加圧縮は、真円の円弧モデルと球カクの式によって算出した計算値と実験値はほぼ一致し、膜材が異なった場合においてもほぼ実験値と一致することから、使用膜材の張力と膜歪特性がわかる場合に実際に使用する膜材の張力と圧力は計算によって算出可能である。
⑦同じ厚みを有する同一膜材を用いた場合の相似則を以下にまとめる。
膜形状・寸法　$L_n = L_m / n$
単位幅膜張力　$f_p = f_m$
膜歪　$
u_p = \nu_m$
増加圧縮　$P_n = P_m \times n$

参考文献
(1) 西野好生、久保義雅、上田一郎：袋体を用いた船舶による液体輸送に関する基礎的研究、日本航海学会論文集、No.105、pp79-88 平成13年9月
(3) Yoshio NISHINO, Masayoshi KUBO : Basic Research on Water Transportation with Large Bag in Ship Hold ー Effect of Membrane Spring Constant on Strain and Tension of Bagー, Organized by China Institute of Navigation, CIN ー JIN ー KINPR JOINT SIMPOSİUM 2002, pp304～312 Sep 2002
(4) 田中正博、三宅正和、大川巧、清川哲志、字多高明、村倉瑞美、「フレキシブルマウンドにによる透過・反射特性的実験的検討」第34回海岸工学講演会論文集 pp492-496 1987年11月
(5) 大山巧、田中正博、清川哲志、三保正和「フレキシブルマウンドによる波の変形による解析」第34回海岸工学講演会論文集 pp497-501 1987年11月
(6) 清川広一、星野明、渡辺弘「汚染拡散防止膜に働く流れの流体力に関する実験的研究」土木学会第38回海岸工学講演会 pp786-790 1991年11月
(7) 改訂版 機械工学便覧 新機械工学便覧編集委員会編 理工学社
(8) JIS K 6404 ゴム引布・プラスチック引布試験法 (1999)第3部 引張試験 JIS ハンドブック 2001

質疑応答
今井昭夫 (神戸大学)：
実際の荷役は全体が袋だと思いますが、その形態での実験は今後されるのでしようか。
西野好生：
袋体の状態での実験は実施しております。今回の実験では袋にすることで生じる液の影響を防止するためタンク圧力の膜材として実施しました。また、袋体とした場合にも袋体の側面および底面は船橋に密着した状態となり上面のみが自由面となることから、今回の実験状態とほぼ同じと考えています。
今井昭夫：
実際の水の袋輸送ではどのように荷役をするのでしょうか。
西野好生：
実際の運用については、まだ詳細な検討を行っておりませんが、袋に水が入った場合で袋を吊り上げるためには、袋の強度面で高強度とする必要があります。これため、荷役方法は袋を吊り上げた後でなく、袋を船槽に積んだ状態のままで直接排水する方法として考えています。
斎藤勝彦 (神戸大学)：
袋の断面形状を各種別に円弧の一部として形状近似されていますが、任意の3次元曲面で近似してその曲面式から張力等を見積もりことはできるのでしょうか。
西野好生：
今回の実験において任意の3次元曲面としての検討はしておりませんが、その曲面での縦横の曲率半径が求めば可能と思います。今回の検討においては膜面中央部での縦方向と横方向のそれぞれの曲面での曲率半径を求めることで圧力算定をしておりますが任意の位置での検討も可能と思います。