Aerial Observation for Marine Traffic Analysis

Susumu KUWASHIMA and Akio M. SUGISAKI

Abstract

MSS (Multi Spectra Scanner) data and aerial photograph of sea surface which are observed with a plane contain many informations of marine traffic flow.

Analyzing these data, statistical properties of marine traffic in broad area are extracted with less hours working and expenses than the data of traditional marine traffic observation with radar and eye-measurement. That properties are following,

(1) average number of ships per square kilometer of each devided area,
(2) distribution of ship’s course of each devided area,
(3) average number of track crossing (collision danger index) of each devided area,
(4) distribution of crossing angle, and etc.

Although accuracy of MSS data is lower than the aerial photograph data, there is a special merit that those data will be obtained even in night.

1. まえがき

湾内航路体系などを求める上で重要な資料となるのが海上交通流実態である。この実態観測の方法としては固定点におけるレーダおよび目視等による連続同時観測が在来から行なわれている。しかしこの方法による観測およびそのデータの解析にはかなりの労力、経費、時間を必要とする。まして対象を湾内全域に広げた場合その作業量も倍加する。

このような海域の海上交通実態観測には航空機を利用してすることにより作業の軽減を計ることができる。ここにその観測例と解析結果の例を示し併せてこの方法に対する問題点を報告する。

2. 航空機観測

広い海域を航空してしている船舶の動静を正確に、しかも同時に把握するには全海域を一望のもとに見渡せば各場所での連続観測が望ましい。しかしそのような場所は地球中央の上空でしかも標準視野角（約 45°）によるカメラ撮影のためには海域直径と同距離の高度を必要とする。例えば観測例として選んだ東京湾の場合、富津岬以北の湾内だけでも長軸方向の距離をカバーするためには 25 マイルの高度となる。このような高度の滞空観測は現実問題として不可能である。そこで実行可能な方法としては、より低空飛行による部分海域毎の捜索を行なうこととなる。この方法の問題点としては全海域データの同時性が保たれないことである。しかし航空機の高速性を利用することより、データの同時性を仮定することは目的によっては許容されるよう。東京湾の観測例ではセンサ機による高度 6900 m、速度 180 ノットで飛行したため長軸方向には片道で約 10 分で飛行できた。ただし短軸方向をカバーするために飛行コースをずらして 1.5 往復する必要があり旋回ロスを含めて結局、約 50 分

* 正会員 東京商船大学（東京都江東区越中島 2-1-6）
データの取得方法としては MSS (Multi Spectrum Scanner) による海面の連続撮影と、フィルム
サイズ 70 mm のハッセルプラッドカメラによる 45 秒毎の海面撮影を行なった。MSS は 0.38 μm
〜12.5 μm 光波長帯を 12 に分割し、それぞれの分割波長帯毎にその受光強度を電圧変換して電気テー
プに記録するものである。MSS の細い受光軸は飛行方向に対し横方向、機体直下 ±40.5° 範囲で連
続的に振られている。したがって飛行方向に長く、ほぼ飛行高度の 1.5 倍に等しい横幅を持った帯状
海面の光情報が取得できることになる (4)。図 1 は 1976 年 5 月 28 日に観測を行なったデータを画像
変換したものである。

d。波長帯は主として熱情報を示す波長 10.5 μm〜12.5 μm を持つチャンネルのみを示している。
すれぞれのテープは、測定海面全体を含めるために、各テープ上に代表的な結果を示すことが
必要である。

3. 船舶動静データの抽出

海上交通流解析のためには航空機による海面データより前記 (1)〜(5) の船舶に関するデータを
まず抽出することが必要である。

MSS データからの抽出方法としては、後のディジタル解析用にまず海面のアナログ信号をディジタル信号に変
換する A-D 変換を行なった。図 3 はディジタル化された信号を計算機ラインプリンター用紙にその数値に応じ
た濃淡で示した富津岬付近の海面データである。図 3 は計算機の文字の組み合わせによる 10 段階の濃淡で示したため、細か
か変化が読みとれないが数値としては A-D 変換の仕様によりいくらでも細かな段階に分けることはできる。ただし MSS の取得温
度情報としては、-20℃〜+80℃ までの範囲をカバーしているため海面付近の温度のみを範囲にて拡大しても総合的な SN 比
からあまり細かく分けても意味がない。上記観測例では約 0.2℃ 以下に区分しても結果的に無意味な数値とな
っていたため一部の数値の持つ面積情報は A-D 変換時のサンプリング間隔によって決まるが図 3 の一画素は

図 1 MSS データによる東京
湾熱赤外画像
図 2 東京湾富津岬付近の航空
写真

NII-Electronic Library Service
結果的に16 m 四方を表わしている。
図3のようなデジタル化された海面情報から、まず抽出できる
航跡情報としては船舶の位置がある。これは海面におけるある数
値レベール以上の画素は海面上の物体（船舶）として識別でき、さら
に陸地との相対的距離からその位置を求めることができる。そして
航行中かどうか航跡線の有無により判別できる。ただし航跡線の抽
出には航跡線数値レベールが他の海面数値レベールに近いため若干面倒
な手順を必要とする。

航跡線を計算機により自動抽出させるためには航跡信号を残し、
他の海面（雑音）データを排除するいくつかのフィルターを用意し
た。

ただし、このフィルターはデータを見ながらそのデータに合わせ
て試行錯誤的に作成したものであるため、他のあらゆるデータにそ
のまま応用できる保証はない。次に使用したフィルターの考え方と
いくつかの効果を示す。

図4は説明用として図3の中央左側を拡大して示したものであ
り、originalの方が図3そのままのデータである。

フィルター1 異常値の除去
フィルター2 全海面を細かな部分海域に区切り、部分海域毎に平均値と分散 σ が等しくなるように正規化
する。さらに航跡線は冷帯のはずであるから、平均値より 2σ 以下の値を残して他のデータを
除く。
フィルター3 航跡信号は航跡の特性より離散した信号のはずであるから、ある範囲以上の孤立信号は除
く。

ここまでの処理を行なった結果が図4(a)のfilter 3である。

図3 東京湾富津岬付近のMSSデータ

図4 MSSデータからの航跡抽出用数値フィルターの効果
フィルター 4 一般に船舶は 90° 以上の急変針は行なわず、ある距離の航跡線は直線近似できるものとして信号の位置的相関係数の小さいものを除く。
フィルター 5 航跡の連続性から次々に最も近い信号を探して連続信号グループを作る。ここまでの処理を行なったものが図 4（b）の filter 5 である。
フィルター 6 連続信号グループが直線的に近く続くようなに合成し、続ながらないグループを除く。ここまでのフィルターを通じたものが図 4（b）の filter 6 であり、ほぼオリジナルデータから読み取れる航跡線と同じものが抽出されていることがわかる。
以上は MSS からの航跡線の自動抽出法であるが、ハッセル写真からも同様にフラッジング・スポット・キャナーなどを使って航跡線の自動抽出の可能性はある。ただしカラー写真の微妙な色の違いを含めて自動判別させることは非常に困難が予想されるため、現状では人間の目による航跡線の追跡の方が数段、精度は上と思われる。
そこで人間の目を利用したポジションディジタイザーを用いてハッセル写真から抽出した航跡線が図 6 である。なお図 5 は MSS データを用いた図 1 の推定像からじむとディジタイザーを用いて抽出した航跡線を示しており両者を比較することにより MSS とハッセル写真の航跡に対する検知精度の違いを知ることができる。

4. 交通流解析

図 5 の MSS データからの東京湾内航跡数は 267 基、図 6 のハッセル写真からの東京湾内航跡数は 459 基得られている。したがってハッセル写真からの読み取り精度精度の方が良いため、交通流解析は主としてハッセル写真からのデータを使用することとする。

図 5、図 6 とともに図中航跡線の一端に描かれている X は船の位置を示すものであり航跡の方向を示している。

（1）航跡長さ分布

図 6 の長さ各群の航跡分布を示したものが図 7 の棒グラフである。全航跡の 77% が 1 マイル未満であり、全航跡の平均は 0.7 マイルであった。写真から読める航跡長さに関係する要因としては船の航速で最大長く関係するものと思われるが、写真上の航跡の大小を含めて眺めてみると大型船ほどその航跡が長い傾向がある。写真上の航跡とは、海面との区別は微妙な色の違いで判別しており、この違いは MSS と同じく水温差に原因すると同時に海水の運動、すなわち航跡流に因るところが大きいと思われる。したがって航跡流の運動量が大きいほど消減時間が長く結果として航跡の長さが長くなるのであり、大型船ほど海水に大きな運動量を与えているからであると推測される。

そこで船の大きさと航跡の長さとの関係をみるために若干資料は古いが東京湾内の東京港、船橋港、千葉港に昭和 41 年から 43 年までの 3 年間に入港した船舶のトン数別年平均を示したものが図 7 の X である。図より細部はともかくとして大局的には両者の分布は良く似ている。

（2）海域別航行数の特徴

東京湾内交通流の特徴を掴むために湾内を地表の網目 5°、経度 5° 間隔の経緯線で分割し、それぞれのメッシュについて統計を出すこととした。図 8 は各メッシュ毎の航跡本数、すなわち隻数とその密度を示すものである。図中の棒グラフの横軸に記した番号 1（左端）は生の隻数を示しており左側の縦軸目盛り（10）に対応している。そして次の横軸番号 2 は規格化隻数を示しやより左側の縦軸目盛りに対応している。規格化隻数とは海上交通工学の分野でしばしば用いられる隻数換算を行なったものである。具体的には基準船を定め対象船舶の何隻分に相当するかを「基準船の長さの二乗」に対する「対象船の長さの二乗」の比で表わしたものである。
図 8 における基準船の長さとしては図 7 の対応関係および船舶のトノ数と船の長さの関係を用いて平均的東京湾内航行船の長さ 35 m を採用した。さらに横軸番号 3 はメッシュ内单位面積（km²）当たりの生の隻数、すなわち隻密度を示し右側縦軸目盛りに対応している。なお図 8 の全部メッシュ平均の隻数密度は 0.486 隻/km² であった。そして最後の横軸番号 4（右端）は近接規格化隻数に対する隻数密度であり、やはり右側縦軸目盛りに対応している。全体に航行隻数および隻数密度とともに東京湾中央のメッシュ（千葉県鹿児島）の値が大きく、同海域は交通の変動している場所と言えよう。

（3）海域別航行針路分布

航跡線は示す情報の一つとしてこの航跡針路を上げることができる。航跡線の中には若干絶行しているものも見られるが航跡線の平均方向を持って航跡針路とした。したがってこの針路は瞬間的な船の姿勢を表すのではなく、ある目的地を指向する基本的な針路と見なせよう。この針路分布を前記と同じメッシュに区切った海域別に表わしたものが図 9 である。表現は各方向を 45° 個の 8 方向に分割し、中央から各分間方向に伸ばした矢印の長さを、その方向への針路を持って生の航行隻数に比例させている。

メッシュの切り方によって分布は若干、変わるものと思われるが、総体的に見て東京湾内を沿って流していること、中の航跡針路北出口附近を東西に航行する船船が多いことなどが目立つことである。

（4）海域別衝突危険度

図 6 を一見してすぐわかるように海域によってはかなり航跡線が幅広い、差し着している場所が見られる。この海域の交差は針路が一定方向に整列されていれば当然考えられないものである。ところが前記（3）の海域別航跡針路分布で見るように海域から入口へかけて整列の度合いは悪く同じメッシュ内で船はあらゆる方向に航行している。したがってこのような海域では必然的に航跡線の交差が生じることになる。この航跡線の交差は必ずしも衝突の危険を意味するものではないが、少なくとも航跡線が消減するまでの時間で両船が交差航過を行なったことを意味しておりそれだけ衝突の危険度は高かったと言える。航跡線の消減時間は船船の速力をほぼ一定とすれば航跡線の長さに比例する。

具体的に湾内航行船の平均速力を 8.5 ノットと仮定すると図 7 より航跡消減時間は 3 分から 30 分程度の幅があり平均的には 5 分ということになる。図 10 はこのような観点から衝突の危険度に比例していると思われる航跡線の交差件数を各メッシュ毎に星印で表わしたものである。具体的には交差件数と星印の面積の平方根が比例しており図中最大面積を示している星印は 14 件の交差件数を示ししの南西および北東海域ではそれぞれ 10 件の交差が生じたことを示している。また各メッシュ左上の数字は単位可航面積（km²）当たりの交差件数で交差件数密度（件/km²）とも言うべき値である。さらに左下の数字はそのメッシュ内の 1 隻当たりの平均交差件数を示している。衝突の危険度を表すパラメタとしては図中の星印数ばかりでなく目的によってはこれらの数値の方が適切な表現の場合がある。例えば交差件数のみで言えば星印の大きな東京湾の中央東岸寄りの海域が衝突の危険度が大きいが交差件数密度で言えば全海域平均 0.103 件/km² に対し横浜、鶴見航跡

![図 10 海域別衝突危険度](image-url)
沖と、羽田沖もかなり危険度が大きい。また1隻当たりの危険度で言えば上記海域に加えて他の素晴らしい海域も全国的にも危険度が大きいというところがわかる。
一方、浦賀水道航道では整流の効果が大きく交差はほとんど起こっていないことがわかる。

（5）交差角度の分布
前記交差現象に伴う交差角度の分布を調べたものが図11である。図11は湾内海域の交差をまとめ、さらに角度も30°毎にまとめたものである。またこの角度は基準船の航跡から常に右回りに相手船の航跡までの角度を採用しているため相手船から見れば反方向になる。したがって図のように左右対称形に描かれることになる。表現は各方向の角度で交差が起った件数に比例した半径の扇形で示した。具体的には円周上の数値が件数を示している。図より全体的に同航から正横附近に至る角度の交差が多く、正面附近の交差はあまり起こていないことがわかる。

以上はハッセル写真から読みとった航跡線図6からの解析であるがMSSからの抽出航跡線図5からも全く同様な解析をすることができる4。したがって解析のもととなる航跡データの抽出精度がそのまま解析結果の評価に大きく影響することになる。

5. 情報取得精度に及ぼす影響
情報の取得手段としてはMSSおよびハッセル航空写真を示したが、それぞれの手段の違いにより情報取得精度が若干異なる。
まずMSSによる情報取得を考えてみる。MSSでは航跡水塊の温度とまわりの海面温度との違いを検出しており、この水温差が大きければ大きいほど情報取得は容易になる。航跡線の水塊は船船のスクリューブレラによりその附近の水塊が海面に押し出されてくるものであるから、結局ブレラ深度の水温と海面水温の差が問題となる。
水温の垂直分布構造は一般には図12のような季節変化をする。図12は東京湾の「中候航路」北出口附近における1961年から1970年にわたる10年間の水温および気温の平均5である。
図より5月～9月頃が海面と海面下との温度差が大きいことがわかる。また図13と図14は平均ではなく直接水温の時間変化を示したものをである。図13は1980年10月16日より24時間の連続観測の記録であり、図14は1980年7月29日11時から2時間半の連続記録である。海面と海面下との水温差の大きい夏のデータ図14に比し、図13の水温差がいかに小さいかが読みとれる。しかも注目すべきことは図13では海面のデータより海面下10mくらいまでの水温の方が高いということである。これは海面水温データと気温データの変化を比較すればわかるように海面温度が気温に非常に敏感に追従しているためである。
いずれにせよ、図13のような垂直方向水温差が小さい時は情報取得精度が悪いことは当然であることから、MSS観測には季節的、時間的にかかなりの制御条件があることがわかる。
次に航跡の長さに関連して水温差のある水塊が混合することにより水温差が小さくなるまでの時間（航跡の消滅時間）も情報の精度に大きな影響を及ぼす。一般に水塊は強制的に攪拌されないかぎり、水温の保存性はかな
航空機観測による湾内船舶の交通流解析

図13 東京湾の水温と気温の時間変化
図14 東京湾の水温の時間変化

り大きいものとされている。ところが海面においてはいくつかの制約がある要素が存在する。その一つは海面の波浪である。他に海面から伝播してくるもので、少なくとも白波の立たない程度の風速以下が限界である。

したがって MSS 継続時には無風に近い時が望ましく、少なくとも白波の立たない程度の風速以下が限界である。東京湾においてはこれまでの観測例から 7～8 m/s の風速が限界と推定される。

他水窓を制限する要素としては潮流がある。一般に海面から海底に至る全層で潮流の影響を受けることは明らかであるが影響の度合いは場によって異なることがある。そのため水温の垂直分布構造が場によって変化したり、海面全体が移動することにより航跡位置の不正確化なども起こる。

したがって MSS 観測是不可能なかぎり観測時に近い時刻を選ぶ必要もある。

次に図5と図6を一覧してみると MSS データでは特に短い航跡（ハッセル写真中の小彫集に相当する航跡）が含まれていない。これは実の流れ小彫集では海面水温と検知温度以上異なる深度の水窓を海面に押出しことができるためである。具体的に図5と図6から比較判断するに MSS では実が 1m 以下の小彫集は検知できないようである。

一方情報取得手段としてのハッセル写真の船舶交通情報の精度に影響する要素を考察してみる。時間情報については前述したように基本的には水温差と海水の航跡に影響を及ぼす水窓の影響についての議論は MSS の議論がそのまま成り立つと考えられる。ただしハッセル写真の場合は、航跡の色の違いに加えて、プロペラによる水窓の影響に伴う白い気泡がはっきり検知されており特に小彫集船ではこれを考慮していなければならない。ただし水窓に白波があるような場合には波との識別が困難となるためはハッセル MSS と同じく湾内では風速が小さい時になければならないう。また平時の特性から当然、明るさを必要とするため観測は日中のみという時間制限がある。さらに日中においても太陽の角度によっては太陽の放射光が強く、いわゆるパレーショーン現象を示す部分が生じる。この現象は異なる種類の情報を提供することもあり一方的に不利な現象ではないが、情報の精度に場所的不均衡を生じさせるものと言える。

6. あ と が き

航空機による観測は湾内交通流に対して場所的に 1 時間弱のずれを持った時間的な断面を捉えたにすぎない。しかし湾内交通流に定常性を仮定するとならば 500 階近いデータによる統計的特性は十分に湾内交通の特性を代表していると言えよう。航跡線からの交通流解析としては 4. で述べた各交通流特性が解析できるが、この他にもハッセル写真からの読み取りを細かく行えば船の大きさを読みとることもできる。そして大きさ別の分布、航跡長さ、方向、交差点などの細かく分割された交通特性を引き出すことも可能である。また本報告書内に、特に示さなかったが湾内部船分布なども得られており湾内全域交通流解析に対する航空機観測の威力は十分と言える。

MSS データを使えばある程度、計算機によるデジタル整理、抽出、解析の自動化が可能であるが、现阶段では 5. で述べたようにデータの検知精度はハッセル写真に比してかなり低い。このことは写真フィルムにおける情報の記録密度と磁気テープのそれとを比較して考えれば当然なこととも言える。ただし夜間観測も可能と言った

NII-Electronic Library Service
写真にない利点も持っており、それらの特性を十分に生かした使用をすべきであろう。

最後に、本研究は日本造船振興財団の全面的協力を受けるものであり、貴重な助言を頂いた同財団「日本国土海洋総合学術診断委員会」海洋専門部会の委員、および同財団調査部の諸氏、解析に協力を頂いた東京商船大学の多治見伸好教授、観測の実施に協力と応援を頂いた東京商船大学洋務部員、そしてデータの整理に協力を頂いた元東京商船大学院生大塚文和君に対し改めて謝意を表します。

参考文献
(1) 昭和45年度東京湾船航海調査報告書、東京商船大学船海航海研究施設、昭和46年3月、150p。
(2) 寺内、清、吉田行秀：船舶の主に寸法と力学的諸量の関係、港湾技術資料、運輸省港湾技術研究所、No.348、昭和38年6月、115p。
(3) 昭和54年度東京湾船航海調査報告書、東京商船大学船海航海研究施設、建設省関東地方建設局、昭和55年3月、161p。
(4) 桑島、進、杉崎昭生：MSSデータによる海上交通流解析、昭和55年度技術報告書——海洋関係——、日本造船振興財団、pp.23－38、昭和56年3月
(5) 東京天文台編：理科年表、丸善株式会社、昭和46年12月、pp.気9
(6) 日本国土海洋総合学術診断委員会第4分科会編：リモートセンシング観測の手引、日本造船振興財団、昭和56年3月、97p。

質疑応答
藤井 弥平
(1) 1回の観測に要する費用は、
(2) 写真の重ね合わせによる速度測定の可能性の有無は、
(3) 羽田空港を控えていること、7000mはオーバーフライトするジェット機の飛行高度であることなどから、航空管制との関係でこのような空域における飛行観測には困難な点があると推定されるが実情はどうか。

桑島 進
(1) 観測は他の機関で行なわれたためはっきりお答えできませんが、来航の方式により東京湾全域をカバーするために必要と思われる費用に対し、十分対抗できる値段と聞いております。
(2) 飛行レーンの異なる写真については同一船舶の認定にやや困難な場合もありますが、御質問の可能性は十分あり解析項目の一つとなり得ると思います。
(3) 当局へ提出のフライト計画に従い、飛行中に所定、管制塔と連絡をとり合っているため、特に問題はないと思います。

奥山 育英
(1) 「在来の方法では多大な労力を、経費、時間を必要とする上に解析にあたっても膨大な作業を必要とする。
……これらの観測や解析が手軽に行なえる一手段として……報告する」と前回りにあるが、それは航空機、Remote sensing の全機種等がそろっていてはじめていえるのではないか。
(2) 取得データは瞬時のデータであることや、船種船型別の有無があるため一概に在来方法とは比較できないのではないか。

桑島 進
(1) 御質問は主として観測に要する費用に関連することと思われます。したがって藤井氏の質問（1）に対する答えを御参照下さい。
(2) 今回の解析では船種、船型まで出しておりませんが、やり方次第ではその情報の抽出は可能です。また瞬時のデータであることに対しては本文あとは記したように結果に対しそれぞれの扱い方をする必要があります。本報告は、在来の方法と同じ結果があろうことを示したものではなく、海上の広域交通流を捉えるには在来の方法と異なった方法もあることを示したものです。
四之宮博：MSSのデータは波長により海面の表皮温度のみを示すことがあり、またノイズなどによりまったく異なった値を示すことがあると言われております。航跡の正しい計測値を定常的に得るためにはシー・トルースと計測データとの対応などを調べてみて、できれば最適波長領域を見出す必要があるのでしょうか。

桑島進：実測した結果、データは僅かな異常値を除き全体的にほぼ真値に近いことを確かめております。また本報告の解析法では航跡海面と他の海面のデータとの差を利用しているわけでも必ずしも温度の絶対値を必要としていません。さらに他の波長帯のデータについても調べた結果、本解析のためには熱赤外波長帯のデータが最適であるとの結論を得ております。