ファジー制御オートパイロットの設計と実船実験—I．

石塚 正則*・竹之内英和**・大津 篤平***

A Design and Sea Trial of Fuzzy Autopilot for Ship— I.

Masanori ISHIZUKA, Hidekazu TAKENOUCHI and Kohei OHTSU

Abstract

In 1974 Prof. Mamdani attempted to control a steam engine plant by Fuzzy Control theory and the successful results were obtained.

After then, the possibility to apply the fuzzy control theory to wide and more complicate systems has risen rapidly.

In Fuzzy Control, the qualitative experience and knowledge that an operator has acquired are described with Fuzzy Control Rule (a form of IF…THEN～).

Therefore, it is possible to design a sophisticated controller which is similar with an operator.

In this paper, the authors designed a Fuzzy Controlled Auto Pilot System and carried out an actual trial. The result of the test were statistically analyzed in comparison with the conventional and the human steering. The developed system shown a prudent steering as the able helmsman steered.

1. 緒 言

人間の持つ主観や懸念さを計算機で実現する方法としてファジー・システムの研究開発が、エンジニアリングの制御分野にとどまらず、ビジネス・自然科学などの分野にもその応用が広がっている。これは、ファジー理論では複雑な対象のモデル化を対象からの不充分・不確定な情報を使用して体系行い得ることや、これまでの経験・知識を言語的規則で表現できるため、人間と機械が係わり合うシステムあるいは人間と人間が係わり合うシステムを扱うのに適している。ここで、人間と機械が係わるシステムである船舶の操舵系に於いて、人間を船舶操舵の制御器と見た場合、人間は多くの制御規則を学習（経験）した上でそれらを適当に使い分けて操舵するものと考えられる。この人間による制御規則は、定性的にははっきり定義した事項はなく、「船首が5°偏差したから舵を5°反対方向に切り、うまく戻らなければ更に舵を大きく切ろう。」とする様な事をやっている。つまり具体的数値には、毎回厳密に同一の値である必要も無く、大体の基準値があるけれど、その近傍値を取ったとしても問題はない。従って、熟練した操舵手が持っているこの制御規則の集合は、物理的な数値化の譲歩は余り頭になく数値定量化は一時的である。本研究では、ファジー制御の概念を取り入れてこのような人間指向型の制御するオートパイロットを特別のファジー推論チップと構築ツール（以下、これをファジー専用ハードウェア、ツールと称する）を用いことなしに通常のFAコンピュータで設計し実船実験を行い、その操舵特性について解析した結果を報告する。

* 正会員 日本航船（株）（〒100 東京都千代田区丸の内 2－3－2）
** 学生会員 東京商船大学大学院（〒135 東京都江東区越中島 2－1－6）
*** 正会員 東京商船大学（〒135 東京都江東区越中島 2－1－6）
2. ファジィ理論

定量化できないと考えられていたこのあいまい性を、Zadeh はファジィ集合論として提案し、ファジィ理論を確立した。さらに、Mamdani らによってファジィ制御が提案されプラント制御などに応用されている。ここに提案するファジィ制御オートパイロットに用いるファジィ集合を、Zadeh に従い次のように定義する。（但し、一般的な集合をファジィ集合と区別する為、これをクリスプ（Crisp）集合と呼ぶことにする。）

（a）定義記法

<table>
<thead>
<tr>
<th>符号</th>
<th>定義</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>全体集合</td>
</tr>
<tr>
<td>E</td>
<td>X のクリスプ部分集合</td>
</tr>
<tr>
<td>A</td>
<td>X のファジィ部分集合</td>
</tr>
<tr>
<td>ϕ</td>
<td>空集合</td>
</tr>
<tr>
<td>$[0,1]$</td>
<td>0 と 1 からなる集合</td>
</tr>
<tr>
<td>$[0,1]$</td>
<td>0 から 1 までの実数の区間</td>
</tr>
<tr>
<td>$A \cap B$</td>
<td>a と b の min を表す</td>
</tr>
<tr>
<td>$A \cup B$</td>
<td>a と b の max を表す</td>
</tr>
<tr>
<td>μ_A</td>
<td>A のメンバーシップ関数</td>
</tr>
</tbody>
</table>

（b）ファジィ集合の定義

ファジィ集合論では、全体集合 X の中で内と外の境界があいまいな部分領域（図 1）を X のファジィ部分集合 A と呼ぶ。ここで、X の要素 x が A に属する度合をグレード（grade），またはメンバーシップ値（membership value）と呼び、この曲线つまり集合の要素と適合との関係をメンバーシップ関数（membership function）とし表現する。これらは、次のように定義づけられる。

$$A = \{x, \mu_A(x) \mid x \in X\}$$

$$\mu_A : x \rightarrow [0, 1]$$

（1）

言語的には、「集合の各要素がその集合に属している程度を、メンバーシップ値によって規定した集合」とも言える。（但し、グレードが 1 に近いほど X が A に属する度合は大きいとする。）

（c）ファジィ集合の演算

ここでは、ファジィ制御に必要となるいくつかの演算を定義しておく。語彙で述べたように、本研究においては、ファジィ専用ハードウェア、ツールを使用していないいため、これらの演算をファジィ推論アルゴリズム作成の一部として用いた。（A, B は、X における 2 つのファジィ集合とする。

・ファジィ集合の相等（equal）

$$A = B \leftrightarrow \mu_A(x) = \mu_B(x), \quad \forall x \in X$$

（3）

・ファジィ集合の包含関係（subset）

$$A \subseteq B \leftrightarrow \mu_A(x) \leq \mu_B(x), \quad \forall x \in X$$

（4）

・ファジィ集合の被集合（complement）

$$A \rightarrow \mu_A^c(x) = 1 - \mu_A(x), \quad \forall x \in X$$

（5）

・ファジィ集合の和集合（union）

図 1 あいまい部分領域

<table>
<thead>
<tr>
<th>X</th>
<th>全体集合</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X のファジィ集合</td>
</tr>
<tr>
<td>ϕ</td>
<td>空集合</td>
</tr>
<tr>
<td>$[0,1]$</td>
<td>0 と 1 からなる集合</td>
</tr>
<tr>
<td>$[0,1]$</td>
<td>0 から 1 までの実数の区間</td>
</tr>
<tr>
<td>$A \cap B$</td>
<td>a と b の min を表す</td>
</tr>
<tr>
<td>$A \cup B$</td>
<td>a と b の max を表す</td>
</tr>
<tr>
<td>μ_A</td>
<td>A のメンバーシップ関数</td>
</tr>
</tbody>
</table>
3. ファジ制御（FLC: Fuzzy Logic Control）

3.1 ファジ制御の言語的制御規則（Linguistic Control Rule）

ファジ制御は、一般的にファジ制御規則（ファジ・ルール）Rを次のよう考え,

\[
R: \text{if } E \text{ is } A_t \text{ and } \Delta E \text{ is } B_t \text{ then } U \text{ is } C_t
\]

\(i=1, 2 \ldots n\)（制御規則番号）

- E : 制御偏差（制御値－設定値）
- \(\Delta E\) : Eの変化率
- U : 制御出力（操作量）

\(A_t, B_t, C_t\) : E, \(\Delta E\), 及び Uの状態を推論するあいまいレベル（ファジ変数）

ブロッセの状態がこの規則に適合する合度を推論し，それを見つける制御出力に決定する。

通常，前提条件変数 E, \(\Delta E\) と後件部変数 Uの値が正に大きいか負に小さいかの言語レベルの付いたファジ集で表現されるため，(8)式は言語的制御規則と呼ばれる。本論文では，このような言語的ラベルを用いた。

- PB (Positive Big) : 正で大
- PM (Positive Medium) : 正で中
- PS (Positive Small) : 正で小
- ZO (Zero) : 零
- NS (Negative Small) : 負で小
- NM (Negative Medium) : 負で中
- NB (Negative Big) : 負で大

又，これら言語ラベルに与えるメンバーシップ関数としては，連続関数として表現する方法（連続型ファジ変数）で関数値で表現する方法（離散型ファジ変数）があるが，ここでは連続型を用いた。

3.2 直接法によるファジ推論（Fuzzy Inference）

（8）式の形で表現された複数の制御ルールがある場合には，ブロッセの状態として \(E^*, \Delta E^*\) に入力された時の制御出力 \(U\) は，ファジ推論によって求める。この推論法として本論文では，「Mamdani の方法（直接法）（Min-Max 合成法）」を用いた。一方では，正則 \(R^1\) に互いに状態（\(E^*, \Delta E^*\)）が前提条件を満たす合度 \(W_t\) ファジ変数 \(A_i, B_i\) のメンバーシップ関数を \(A_i(E), B_i(E)\) とすれば，

\[
W_t = A_i(E^*) \cap B_i(\Delta E^*)
\]

\(= \min(A_i(E^*), B_i(\Delta E^*))\)

(9)

つまり，\(C_t\) を（\(E^*, \Delta E^*\)）に対する正則 \(R^1\) による推論結果を示すファジ集合とする，そのメンバーシップ関数 \(C_t^*(U)\) は，ファジ変数 \(C_t\) のメンバーシップ関数 \(C_t(U)\) を用いて

\[
C_t^*(U) = W_t \cap C_t(U)
\]

\(= \min(W_t, C_t(U))\)

(10)

と表わす。ここまでの演算を図2に示すと，正則 \(R^1\) の Uのメンバーシップ関数の曲線をグレード \(W_t=0.17\)で水平にカットして台形形のメンバーシップ関数 \(C_t^*(U)\) を求めた事になる。

つまりこの演算は，\(E^*\)に関するグレードと \(\Delta E^*\)に関するグレードの小さい方を取る演算を行って，不確かな情報に基づく推論法は余り評価しないという考え方になっている。

今までに，各規則が成立した個数をメンバーシップ関数 \(C_t^*(U)\) が用意されが，総合推論結果 \(H^*\) を求める為，\(C_t^*(U)\) を重ね合わせて（6）式の max演算を行う。
ここでは結果の出力は、メンバーシップ関数の最大のところを探用する事になり、結論の最も確からしいところを求めていることになる。しかし、ここで求めた操作出力 H^* はメンバーシップ関数で表現されるファジー量であるので確定値に変換（非ファジー化・Defuzzification）する必要がある。この変換に関しても、重心法・メディアン法・高さ法等多種あるが、ここでは重心法を採用する。重心法では、図 2 のようにメンバーシップ関数の重力 U^* を求めて出力値とするもので次の(12)式により計算される。

$$U^* = \frac{\int U H^*(U) d(U)}{\int H^*(U) d(U)} \quad \cdots(12)$$

ここで、複数の結果のグレードがすべて小さい場合には、それらは“あまり”な情報ということになり、例えば重心を取っても最終結果は前件部の量のファジー化が連続的に行われるようにメンバーシップ関数を構成するので 1 つ以上のグレード，グレードの高いもの低いもののファジー変数を置き換えられ、複数結果のすべてのグレードが小さいということは起こらない。

3.3 ファジー制御器 (Fuzzy Controller)

前記のファジー推論を基に、主として次の 2 つのファジー制御方式がある。

1) 状態評価ファジー制御方式

この方式は、制御対象の数学的モデル作成に要することなく、過去の操作経験に基づく状況の推定としてオペレーターの観察をアルゴリズム化する方式 (図 3) といえる。具体的には、制御対象の状態量観測値をオペレーターの観察を表すファジー集合（ファジー変数）にどの程度適合しているかを評価し、これらのファジー集合により定義された各制御規則の適合度を求める（ここでいう制御規則は、制御対象の状態の特徴的な状況（前件部）に対して選択すべき制御指令（後件部）を記述している。）すべての制御規則の現在状況に対する適合度を総合的に評価し制御指令が求まる。従ってこの方式は、あくまでも目標値に制御対象の状態量を追従させるものであり、制御対象の状態量の変化に対して制御指令を非線形的に変化させる必要のある物に適する。

2) 予見ファジー制御方式

この方式は、オペレーターによる運転を
1. 複数の制御目的のファジー理論による把握
2. 制御対象の状態量の状況に対する制御規則
3. 制御対象の将来の動きを予想するための数学的モデル
を結合しアルゴリズム化する方式（図4）をとる。具体的には、制御対象の状態量の観測値を基にファジー制御規則による制御指令の全候補値についてシミュレーションを行い、制御目的を満たすか否かを予測・予見する。
さらに、この結果を基にファジー関数による多目的評価、推論を行い最適な制御指令を決定する。
ここでは、制御方式としてその作成が簡単である1)制御特性ファジー制御方式を用いたが、将来は2)予見ファジー制御方式の方式も有効であると思われる。
3.4 ファジー制御による Autopilot
本論文においては、着らで述べたようなルールに従い船用 Autopilot の設計を行う。
1. 制御規則の作成
船体の制御系を1次遅れ+1むた時間系と見なし、それに対する制御規則を図5のようなる船体応答部を割り当てるものとする。尚、制御規則は PID 制御計算アルゴリズムでいう位置型$^{(1)}$ (total algorithm) を用い、入力情報に船首偏角 E (設定針路→現在針路)、偏角加速度 $AE : (E_{t+1}−E_{t}−E_{t−1})$、出力情報は舵角量 U (Starb'd舵 (＋)、port舵(－))のファジー値を用いた。
Rule A: if E is PB and AE is ZO then U is PB
Rule B: if E is ZO and AE is PB then U is NB
Rule C: if E is NB and AE is ZO then U is NB
Rule D: if E is ZO and AE is NB then U is PB
その他の応答領域の規則も考慮し、表1に示す制御規則テーブルを作成する。
2. メンバーシップ関数の作成
次に、規則中の各ファジー変数のメンバーシップ関数を作成する。今回の作成に関しては、実験開始に当り、人間操舵と在来 Autopilot によりそれぞれ保証、変針操舵のデータを採取しあの応答特性をもとに著者の経験と

図5 船体の操舵応答

表1 制御規則テーブル

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
</table>

E: 船首偏角

<table>
<thead>
<tr>
<th>$ΔE$</th>
<th>NB</th>
<th>NM</th>
<th>NS</th>
<th>ZO</th>
<th>PS</th>
<th>PM</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>NS</td>
<td>PS</td>
<td>NS</td>
<td>ZO</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
</tr>
<tr>
<td>NM</td>
<td>NS</td>
<td>ZO</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
</tr>
<tr>
<td>NS</td>
<td>NM</td>
<td>NS</td>
<td>ZO</td>
<td>PS</td>
<td>PM</td>
<td>PM</td>
<td>PB</td>
</tr>
<tr>
<td>ZO</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>ZO</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
</tr>
<tr>
<td>PS</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>ZO</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
</tr>
<tr>
<td>PM</td>
<td>NB</td>
<td>NM</td>
<td>NM</td>
<td>NS</td>
<td>ZO</td>
<td>PS</td>
<td>PB</td>
</tr>
<tr>
<td>PB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>PS</td>
</tr>
</tbody>
</table>

図6 メンバーシップ関数の定義

NII-Electronic Library Service
日本航海学会論文集 2年3月

図7 制御規則による $E, AE \rightarrow U$

図8 ファジ制御 Auto-Pilot ハードウェア構成

図9 ファジ制御 Auto-Pilot ハードウェア構成

図10 ファジ制御変数編集画面

次の変数を用いたファジ推論を用いる制御方式により実際の制御を記述する。

船用 Autopilot は、変数推論の制御方式を考慮して使用することが必要であるが、今回は特に各々の制御規則、メンバーシップ関数の選択することなく単一の規則、関数でこれを行えるようファジ制御を考慮する。

図7は、表1のすべての制御に対して操作量を求めて図示したもので、ファジ制御者が非線形化制御を行っているのがわかる。以上のシステムは、推論部を含め東京商船大学練習船汐路丸搭載の横河電機製 YEW MAC300 上で作成した。そのハードウェア構成を図8、ソフトウェア構成を図9に示す。

使用プログラム言語は、YEW MAC の Real Time YM-BASIC インタープリターによった。また図10、11は、ファジ変数及び制御規則編集時の表示画面であり、各変数・規則の登録、追加及び変更のための画面で

\[
\mu_a = -\frac{1}{a} (\frac{1}{x-b} + a) \quad 0 \leq a > 0
\]
図11 ファジイ制御規則編集画面
ある。図12は、制御実行中の表示画面で、ファジイ推論結果、制御規則の候補状況、及びその制御状況等を示しているが、特に制御規則の候補表示はその規則を構成する各命題のグレードと規則のグレードをグラフ（ファジイ状態表示）で表示し、推論結果が容易に分かるようにしている。

4. Fuzzy-Autopilot 実船実験と結果
実船実験の供試船は、東京商船大学練習船“汐路丸”を用いた。同船の要目を表2に示す。自動操舵実験は、ファジイ制御型のFuzzy-Autopilot及び同船搭載の適応制御型のAdaptive-Autopilotについて保針及び変針操舵を行った。

4.1 保針操舵
図13は、ファジイ制御、適応制御による保針操舵の実験結果
図14 Calm Seaにおける連続操舵（保針及び変針）

図15 Rough Seaにおける連続操舵
果である。図14，15は、それぞれ海象 Calm Sea, Rough Sea における連続操舵の実験結果である。制御のサンプリング周期は1秒である。この実行時間だけで直接両者の優劣をつけることはできないが、適応制御では滑らかな操舵を行い、ファジ制御ではぎザギザな操舵を行っていることがわかる。保針に関する小山の評価関数（14）式(11)を
\[
J = \int \left(E^2 dt + U^2 dt \right) \cdots (14)
\]
とする。

図16 5°変針時の操舵

図17 10°変針時の操舵

<table>
<thead>
<tr>
<th></th>
<th>Calm Sea</th>
<th>Rough Sea</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\int E^2 dt$</td>
<td>034.673</td>
<td>540.466</td>
</tr>
<tr>
<td>$\int U^2 dt$</td>
<td>0080.679</td>
<td>1792.910</td>
</tr>
<tr>
<td>J</td>
<td>0115.352</td>
<td>2333.376</td>
</tr>
</tbody>
</table>

適応制御
	151.075	477.172
$\int E^2 dt$	0235.047	1095.420
$\int U^2 dt$	0386.122	1572.592
J		\cdots \

Tは、制御時間
用いて数値的な比較をすると、表3に示すことになるCalm Seaにおいてファジ制御の方が幅かに良好となっているが、Rough Seaにおいては劣化している。これは、Calm Sea、Rough Sea共に図6で示したメンバーシップ関数を使用したためで、この関数がRough Sea状態に合っているか否かによるものと思われる。このように、Fuzzy-Autopilotにおいても、激しい外乱の非定常変化に応答する何らかの付加機能が必要であることがわかる。今後も、メンバーシップ関数の適切な選択なども考慮した実験を行って行きたい。

4.2 収束操舵

図16、17は、各々ファジ制御、適応制御による変針操舵の実船結実である。制御サンプリング周期は1秒とし、変針角度は5.10°とした。今回の変針結果についての偏角応答は共に同等なものになったが、操舵パターンは相当な違いが現れている。適応制御では、ある程度舵を取った後ゆっくり戻すような操舵（大義者の操舵）を行うが、ファジ制御では、舵を取ってこの応答に対し当て舵を取るような繰り返しの操舵（細心者の操舵）を行っている。人間系に舵をとるファジ制御においては、熟練した操舵者の操舵法に似た制御をしていること

がわかる。

4.3 操舵特性解析

各制御における自動操舵性能の操舵特性を解析してみる。図18、19は、各々制御における保船中にあてたデータについて偏角および舵角のパワースペクトラム及びインパルス応答関数の一例である（詳細な計算方法については、例えば大津他46)(47)あるいは山内・大津他48)(49)(50)を参照）。

各々の制御におけるパワースペクトラムでは、ファジ制御においては、人間操舵と似たスペクトラムが示しており著者のパーソナルスペクトラムが示しており顕著なピークが見られない。これに対し適応制御においては、偏角で0.035Hz（30.3秒周期）、舵角で0.066Hz（15.2秒周期）の所に比較的長周期にピークが見られる。

又、船首揺れのインパルス的変化に対する舵の応答では、両者共に高次の応答をしているがファジ制御では、1秒後に1.7°の舵を取るその後0.6°の当て舵を取る中立に戻る比較的短時間に行動するような操舵をしている。これに対し適応制御では、1秒後に1.1°の舵を取るその後0.3°の当て舵を取るゆっくり中立に戻る。これらは、上記の変針操舵と同様な操舵特性を示している。今後、本研究において得られた実験結果を著者の一人が数年前に掲載したインパルス応答を使った操舵法解析50によって人間操舵等と比較し、更に検
5. 結論

ファジィ制御法として最も多用されている Mamdani の Min-Max 重心合成法を用いて実船実験による自動操舵制御を試みた。
この Min-Max 重心合成法は、ソフト構成及びハード構成共に簡単に作成でき処理速度も速く、その有効性及び人間指向型の操船法を行う制御系を示した。
但し、ファジィ制御の適用本質は、オペレータの経験・知識に基づいた“あいまい”な情報をいかに推論アルゴリズムに組むかであるから、今回用いた Min-Max 重心合成法のみの構成では、即座に満足できる制御系設計は得られない。しかしながらこれ等の実問題に耐えるものにするには、今回行われなかったところの
1. 外乱適応機能、学習機能によるメンバーシップ関数及び制御論則の変更（オートチューニング）
2. 最適制御法との結合による複合ファジィ制御の検討
3. 大型船（特に針路不安定船）等でのシミュレーション、実験検討
などが今後の課題となる。

6. 謝辞

本研究の遂行に当たって、東京商船大学練習船汐利丸原船長以下乗組員には著者等勝手な実験を好意され援助を惜しまれなかったことを感謝致します。さらに、本稿を作成するためにあたり田崎哲夫君、篠田真子さんにお世話になったことを感謝いたします。

参考文献
(2) 長谷川和彥, 上月明彦: Fuzzy 制御による自動避難システムに関する研究, 関西造船学会誌, 第 205 号, (1987)
(3) 清水 陸, 小山健夫: あいまい制御による航路交差部の通過時刻・速度調整, 日本造船学会論文集, 第 156 号, (1984)
(6) 大津皓平, 半田俊士: 自己回帰モデルによる操舵法の解析（その 1）, 日本航海学会論文集, 第 60 号, (1979)
(7) 大津皓平, 坂籠教夫, 北川基四郎: 保針運動の計測の相定と最適操舵, 日本造船学会論文集, 第 139 号, (1976)
(8) 大津皓平, 坂籠教夫, 北川基四郎: 保針運動の計測の相定と最適操舵（続）—ON LINE 制御, 日本造船学会論文集, 第 145 号, (1978)
(9) 山内保文, 大津皓平, 北川基四郎, 篠田哲: データ解析の動向（1），日本造船学会誌, 第 589 号, (1978)
(10) 山内保文, 大津皓平, 北川基四郎, 篠田哲: データ解析の動向（2），日本造船学会誌, 第 591 号, (1978)
(11) 大津皓平, 長谷川和彦: オートバイロットの評価と展望, 日本造船学会第 3 回操縦性シンポジウム, (1981)
(13) 菅野達: ファジィ制御, 日刊工業新聞社, (1988)
(14) 水本雅晴: ファジィ理論とその応用, サイエンス社, (1988)
(15) 寺野多郎, 浅居喜代治, 菅野達 (共編): ファジィシステム入門, オーム社, (1987)
質疑応答

原潔（神戸商船大学）：(1)知識獲得を具体的にどの様に行われたのでしょうか。
(2)実船実験で、人間の制御結果とファジ制御の結果を比較されたのでしょうか。

石塚正則：(1)実験開始に当り、人間操舵と在来Autopilotによりそれぞれ保針、変針操舵のデータを採取しその応答特性をもとに制御規則、メンバーシップ関数の作成を行いました。
(2)今回の実船実験範囲では、人間が行う操舵との比較は行っていません。今後の実験で行っていきたいと思います。