Course Estimation Neural Network System

Masaaki INAISHI and Akio M. SUGISAKI

Abstract

This paper concerned with a picture recognition neural network system for course estimation. A subject of recognition is a picture of target ship which can be seen in the bridge.

This system consists of four functional blocks: a picture input block, a picture processing block, a picture recognition neural network block and an output block. The neural network topology is four-layered network, which includes Tschebyscheff layer. Pictures of one fiftieth scale model of the Shioji-maru, a training ship, are used for supervised training pictures. Recognition ratio which is equal to similarity of a test picture and the supervised training picture is calculated by the neural network outputs. And an estimated course is decided by distribution of the recognition ratios.

The summary of the results are shown below.
(1) Possibility of course estimation which makes use of the picture recognition neural network is found.
(2) Accuracy of course estimation is about ±18 degree.
(3) Time required of course estimation is about 4.5 second using a 22 MIPS computer.
(4) If the picture of different style of ship from the Shioji-maru as the supervised training picture is inputted to this system, course estimation capacity is insufficient level.
(5) Information of a navigation image understanding system building is obtained.

1. はじめに

航海過程推定ニューラルネットワークシステム

稲石 正明*・杉崎 昭生*

Course Estimation Neural Network System

Masaaki INAISHI and Akio M. SUGISAKI

Abstract

This paper concerned with a picture recognition neural network system for course estimation. A subject of recognition is a picture of target ship which can be seen in the bridge.

This system consists of four functional blocks: a picture input block, a picture processing block, a picture recognition neural network block and an output block. The neural network topology is four-layered network, which includes Tschebyscheff layer. Pictures of one fiftieth scale model of the Shioji-maru, a training ship, are used for supervised training pictures. Recognition ratio which is equal to similarity of a test picture and the supervised training picture is calculated by the neural network outputs. And an estimated course is decided by distribution of the recognition ratios.

The summary of the results are shown below.
(1) Possibility of course estimation which makes use of the picture recognition neural network is found.
(2) Accuracy of course estimation is about ±18 degree.
(3) Time required of course estimation is about 4.5 second using a 22 MIPS computer.
(4) If the picture of different style of ship from the Shioji-maru as the supervised training picture is inputted to this system, course estimation capacity is insufficient level.
(5) Information of a navigation image understanding system building is obtained.

1. はじめに

船舶運航の安全性を確保するために、人間の知覚機能が重要な役割を果たしている。船舶運航において、重要な知覚機能として視覚機能と聴覚機能を挙げることができる。知覚機能の一部を機械に置き換えることが可能であるならば、運航者の作業負荷をかなり軽減することができる。視覚機能を使って収集される情報の種類は、絵画情報と船橋外情報に分けることができる。船橋外情報は各種航海機器等に表示されるデジタル情報であり、船橋外情報とは船橋から見える航海環境（シーン）からの情報であり、見張り作業によって収集される情報をさす。

運航者（見張り）が視覚機能を使って収集する船橋外情報の種類を図1のように整理することができる。船橋外情報は、衝突回避のための情報および一般操船のための情報に分けることができる。衝突回避のための情報は、相手船に関する情報を含むか、浮遊物や岸壁などの障害物に関する情報に分けることができる。運航者は、図1に挙げる情報の収集に際して、その航海環境を理解し、必要な情報を収集している。このため、情報収集に関する支援レベルの向上や自動化を行うための一つの方法として、船橋から見える環境（三次元世界）を画像化（二次元世界、航海環境画像）し、画像認識だけでなく画像を理解するシステムの構築が挙げられる。

航海環境画像の画像認識とは、画像中の船や障害物などの対象物を認識対象として取り出し（セグメン

* 正会員 東京商船大学 (〒135 東京都江東区越中島 2-1-6)
テーション、segmentation）、認識対象の世界を認識対象と背景からなる世界に置き換え、認識対象の特徴などを利用して対象の認識（アスペクトの推定や船種認識）を行うことである。航海環境画像の画像理解とは、対象となる世界（航海環境）を多数の対象物（船、陸、障害物など）から構成される構造体として捉え、認識対象に関する個別知識と認識対象の相互関係に関する知識を利用して航海環境の状況を理解することである。画像認識技術を用いた支援では、対象物のアスペクトなどを認識することができ、画像認識技術を用いた支援では、必要な情報の種類を判断し、対象物個別に画像認識により情報を収集することなどができる。

本研究の目的は、運航者の視覚による情報収集を支援するために、航海環境画像から、相手船のアスペクトと関連する、針路を推定することを試みることである。画像認識の方法として、階層型のニューラルネットワークを用いたパターン認識結果である認識率の分布から針路を推定する。同時に、針路推定システムを構築し、能力試験および評価を行い、本研究の延長線上に位置付けられる、航海環境画像の画像理解システムの構築へ向けての知見を得ることである。

2. システム設計および構築

2.1 システム機能および動作

針路推定のモデルは、パターン認識モデルおよび認識率極大点推定モデルの2つのモデルから構成される。パターン認識モデルは、階層型ニューラルネットワークへの情報蓄積能力を利用し、教師画像と針路未知の画像の類似割合を示す認識率（船体の外観が一致した画素数を全画素数で割った値）を算出するモデルである。認識率極大点推定モデルは、認識率の分布曲線から認識率が極大を示す角度を求め、相手船の針路を算出するモデルである。

針路推定ニューラルネットワークシステムの機能ブロックを図2に示す。システムは画像入力ブロック、画像処理ブロック、ニューラルネットワーク認識ブロックおよび推定針路出力ブロックの4つから成る。

画像入力ブロックには、アナログ情報である航海環境画像が入力される。本研究では、図3に示す、汐路丸（東京商船大学練習船）の1/50模型のスチル写真（0°から22.5°毎に16方位）および東京湾で撮影した実船のスチル写真を入力画像とした。針路角θの定義を図4に示す。
画像処理ブロックはアナログ情報をデジタル化し、船体だけを抽出するセグメンテーションを行う。さらに、船体を表すのに必要な特徴点を特定し、その座標を抽出する。本研究では画像認識に焦点を置くため、画像処理ブロックについては手作業で行うこととした。特徴点を示す座標値は計算機に入力され、ニューラルネットワーク画像認識ブロックの認識データ作成部に入る。ここでは、画像の特徴を拡大表現するための正規化処理およびニューラルネットワークの入力データとするための二値化処理を行う。

認識データ作成までの画像の変換プロセスを図5に示す。図5(a)は船体の特徴点抽出画像を示す。特徴点抽出画像は航海環境画像のグレーレベル(濃度階調)を考慮した一種の輪郭画像である。図5(b)は縦方向、横方向とも [0, 1] に正規化した画像である。図5(c)は図5(b)を縦横とも25分割した画素(デジタル画像配列の要素、pixel、676画素)に分け、船体の内側と外側を識別するコード(内側：1、外側：0)で二値化した画像である。

図3 汊路丸スチル写真

図4 針路の定義

図5 画像変換プロセス
推定結果

図2の針路推定演算ブロックには、図5(c)を数値化したデータが入力される。8つの学習済ニューラルネットワークには、図5(e)の画素の中心位置の座標値 \((x, y)\) が入力される。676の画素に対して、各学習済ネットワークは各画素の座標に対する船体の内外識別コードを出力する。ネットワークの出力値と針路未知画像の船体の内外識別コードの一一致値から認識率 \(R\) を計算し、認識率分布を求める。認識率分布の一例を図6に示す。認識率極大点推定モデルによる、推定針路の計算アルゴリズムを以下に示す。

1. 認識率の最大値 \(R_{\text{max}}\) を示す角度 \(\theta_{\text{max}}\) を求める。
2. 角度 \(\theta_{\text{max}} \pm 45^\circ\) に対する認識率 \(R_{\text{max} \pm \theta}\) を求める。
3. 3点 \((\theta_{\text{max} \pm \theta}, R_{\text{max} \pm \theta})\), \((\theta_{\text{max}}, R_{\text{max}})\) より \((\theta_{\text{max} \pm \theta}, R_{\text{max} \pm \theta})\) を通る、上に凸な二次曲線 \(f(\theta)\) の式を求める。
4. \(f(\theta)\) の最大値を示す角度 \(\theta\) を求める推定針路である。

推定結果は、推定針路出力ブロックに送り、ユーザに表示する。

2.2 ニューラルネットワーク構造

ネットワークの構造は、図7に示すように、隠層型のニューラルネットワークを採用した。入力層は2つのユニットから成り、画素の中心位置の座標値 \((0 \leq x \leq 1, 0 \leq y \leq 1)\) が入力される。入力層から隠れ層の間にニューラルネットワーク構造を多層に重ねたネットワーク構造を、複雑な非線型構造を精度良く学習することを困難である。そこで、複雑な形状をした船体構造を少ない教師データ数から効率良く学習することができる、チェビシェフ層を導入した。本ネットワークは、隠れ層および出力層には単調で非線形なチェビシェフ関数

\[S(\alpha) = 1/(1 + \exp(-\alpha)) \]

をチェビシェフ層には非単調で非線形なチェビシェフ関数を融合したニューラルネットワークである。

チェビシェフ層（8ユニット）では、チェビシェフ関数により画素の中心位置の座標値 \((x, y)\) をそれぞれ4次まで展開した値を各ユニットに出力する。チェビシェフ層のユニットの出力関数は、次式で表される。

\[T_n(\beta) = \frac{\cos[n \cdot \cos^{-1}(2\beta - 1)] + 1}{2} \]

\[0 \leq \beta \leq 1 \]

\[0 \leq T_n(\beta) \leq 1 \]

ここで、

\[T_1(\beta) = \beta \]

\[T_2(\beta) = (2\beta - 1)^2 \]

\[T_3(\beta) = \beta (4\beta - 3)^2 \]

\[T_4(\beta) = (2(2\beta - 1)^3 - 1)^2 \]
であり、\(n \) は次数、\(\beta \) は画素の \(x \) 座標値または \(y \) 座標値である。

隠れ層のユニット数は教師データ数、すなわち分割画素数および船体形状の複雑さに依存する。本研究では試行錯誤的にユニット数を求め、隠れ層のユニット数として、学習が可能な最小ユニット数である、
チェビシェフ層のユニット数の 2.5 倍 (20 ユニット) とした。出力層のユニット数は、船体の内側と外側
を示す、1 ユニットである。

2.3 教師データおよび学習

教師データの作成には、夕路丸模型のスチル写真（0°から 45°毎に 8 方位）8 枚を教師データの原画像と
して用いた。原画像に対して、図 5(a)から図 5(c)までの画像換換を行う。船体の輪郭の内側と外側の画
素および画像の外側領域を示す画素を抽出し、これらの画素の中心位置の座標値および船体の内外識別
コードを教師データとした。

チェビシェフ層を設けないネットワーク構造の場合、図 5(c)に示す二価化画像の全画素 (676 画素) を
教師データにしなければならない。しかし、チェビシェフ層を設けた場合は、図 5(d)に示す印 (船体の
内側)、×印 (船体の外側) の画素だけを学習すれば全画素を学習することになり、教師データ数を減らす
ことが出来る (约 1/3)。チェビシェフ層導入の利点としては、教師データ数の減滅に関連した、学習時
間の短縮および隠れ層のユニット数の減少が見られる。欠点としては、層数の増加に伴う処理時間の増
加が見られる。隠れ層のユニット数の減少に伴う処理時間の短縮効果の方が層数増加によるものよりも
大きいと思われるが、具体的な効果の度合いについては検討を行っていなかった。

8 方位に対する教師データは、それぞれ個別のネットワーク (構造、ユニット数などは、全て図 7 と同
じ) に学習させる。学習はチェビシェフ層から出力層
までをバックプロパゲーション法 \(^{16}\) によって行い、入
力層からチェビシェフ層までの結合の重みは 1 とした。
学習の終了条件として、二乗平均誤差が 0.0002 以下で、図 5(c)に示す二価化画像を復元できるときとし
た。これは、教師データ (図 5(d)) を復元できる程度の
終了条件では、図 8 に示すような偽像 (船体の内部
に空洞があり、右上に船体内部を示す画素が存在) が
発生するからである。学習時間としては、22 MIPS (million instructions per second) の計算機で、約 35
分から 100 分 (針路によって異なる) を必要とした。

3. システム能力および評価

3.1 認識率分布

船体の特徴点抽出画像は、スチル写真のグレーレベルを考慮した輪郭画像であるが、一種の船体のシル
エット画像と見ることができる。針路 45°と 135°（針路角度の定義は図 4）、90°と 270°などの画像は、シル
エットが同じであり、認識率分布に顕著な差が見られず、針路推定が困難である可能性が考えられる。そ
こで、針路推定の可能性を見極めるために、認識率分布の特徴について検討を加えることとして、

教師データに用いた画像をシステムに入力した時の認識率分布を図 9 に示す。図中の NN-0 は針路 0°
を、NN-180 は針路 180°の画像を示す。針路 0°と 180°の場合 (図 9(a))、船の向きが逆であるため、分布
の傾向に差異が見られる。針路 45°と 135°の場合 (図 9(b))、両者の分布形状は、ほぼ相似であるが、針路
差に等しく位相が 90°ずれた形となっている。針路 90°と 270°の場合 (図 9(c)) も同様であるが、図 9(b)
に比べて、角度が 90°と 270°での認識率の差が小さい。しかし、認識率の最大値を示す角度は、図 9 に示
すように、全て異なる角度である。これらのことから、単純なシルエット画像では認識が困難であるが、
原画像のグレーレベルを考慮した二価化画像を用いることによって、針路推定が可能であることを確認できた。
グレーレベル考慮のためのしきい値などの検討については、今後の課題と考えている。

図 8 偽像 (針路 90°、ハードコピー)
3.2 針路推定能力
汐路丸模型に対する針路の推定結果を図10に示す。
縦軸のθτは推定針路を、横軸のθτは現の針路を示す。
図中の○印は676の魚群に対する認識率の分布から求められた針路を、△印は船体の輪郭を示す画像だけに対する認識率の分布から求められた針路を示す。
推定針路はθτ=67.5°における△印のデータを除いて、斜きが1の一点傾線と良く一致していることがわかる。
このことから、ニューラルネットワークを用いた画像認識で相手船の針路を推定できることが明らかとなった。

針路推定の精度は約±18°であった。この値については、著者らが以前に報告した、状況判断ニューラルネットワークのアスペクトのパターン数と対応を考えるならば、十分な精度であるといえる。ニューラルネットワーク画像認識ブロックでの処理時間は、22 MIPSの計算機で、約4.5秒であった。プログラムの最適化、システム全体のニューラルネットワーク化、並列処理コンピュータの導入、ニューラルネットワークのICチップ化などにより、針路推定の所要時間はかなり短縮できるものと考えている。

汐路丸模型を使って学習と能力テストを行い、8方位分の教師データで0度から360度までの針路を推定できることが確認できた。しかし、現実は多様な船（汐路丸船が異なる船）が存在する。そこで、東京湾を走っている船舶のスチル写真を撮り、針路推定の実験を行った。船舶の種類としては、図11に挙げるように、コンテナ船（2隻、○印）、貨物船（2隻、△印）、らば積船（口印）、木材運搬船（▼印）、タグポートとはしけ（◇印）および練習船（大成丸、●印）
の6種類である。タグボードがはしごを押している写真は、船体抽出作業で2隻の船に分けなければならないが、ここでは1隻の船としてシステムに入力された時の出力を調べてみることとした。□印で示される、ばら礁船の針路推定は、比較的良い結果を示しているが、他の船種については推定精度が悪い。タグボードとはしごの場合については、推定精度が極めて悪いことがわかる。また、船種に相違なく、θn=270°近くの針路推定結果を多く出力しているが、これはシステムの出力特性によりものと考えており、明確な理由は不明である。これらのことから、針路推定の結果を示すプロセスとして、船種を認識するサブシステムの構築が必要であることが明らかとなった。

4. おわりに

画像認識を用いて、相手船の針路を推定する可能性について検討を加えた。さらに、構築した針路推定ニューラルネットワークシステムの推定能力などに関する評価を行い、満足できる結果を得ることができた。

本研究で得られた主な成果を以下に示す。
(1) ニューラルネットワーク画像認識による、針路推定の可能性を見い出した。
(2) 針路推定の精度は土18°であった。
(3) 針路推定の所要時間は、22MIPSの計算機で、約4.5秒であった。プログラムの最適化またはネットワークのICチップ化などを行うならば、さらに所要時間は短縮できる。
(4) 学習用のモデル船（汐路丸）と船種が異なる船に対する針路の推定能力は悪い。
(5) 画像化画像に変換して針路を推定する場合、船体抽出におけるグレーレベルの考慮が重要であることを明らかにした。
(6) 船舶運航の画像認識システムや理解システム構築のための知見を得た。

今後の課題としては、推定精度の向上に関連して、
(1) 分割画素数の検討
(2) 教師データ用の画像数の検討
(3) 船種を認識するシステムの構築
などが挙げられる。また、船体抽出とグレーレベル考慮に関連して、
(4) 画像認識の前処理に適した、画像処理システムの構築
が挙げられる。今後、船舶運航の画像理解システムの構築へ向けて検討を行っていきたい。

本研究にあたって、東京商船大学運送工学科12回生五十嵐華男に教師データの作成やシステム評価実験などで多くの協力を得た。ここに記して感謝の意を表します。

参 考 文 献
(1) 今津隼馬：避航と衝突予防装置，成山堂，1984。
(2) 黒川 昇，今津隼馬：他船視覚情報の収集自動化に関する研究，日本航洋学会論文集，vol.82，pp.85—91，1989。
(3) R. Nevatia 著，南 敏監訳：画像認識と画像理解、啓学出版，1986。
(4) 白井良明編：パターン理解，オーム社，1987。
(5) 辻 三郎：コンピュータビジョンへの道，情報処理，vol.24，no.12，pp.1414—1420，1983。

図11 実船の針路推定結果
質疑応答

今津隼馬（東京工業大学）：モデル船の針路推定法において、距離の影響があると思われますが、これについてどのような傾向があるのかお聞かせ下さい。

稲石正明：同一条件（汐路丸模型とカメラの距離（約4m）、絞り、シャッタースピード）での撮影および入力画像の正規化処理により、モデル船（汐路丸）の針路推定における距離の影響はないものと考えております。しかし、実船に対する針路推定においては、教師データ画像の被写界深度と供試船画像の被写界深度の関係や画像撮影装置の解像度について、グレーレベルと関連して、今後十分に検討を加える必要があるものと考えております。

和気博嗣（神戸商船大学）：シェビシェフ層の導入は船型によっては処理時間の短縮に結びつかないものもあるのではないか。また、モデル（汐路丸）と異なる対象船で針路推定がはやれる一つの原因とこれの導入が関わっていないか。

稲石正明：隱れ層のユニット数が同じならば、三層のネットワークと比較して、シェビシェフ層を導入することによって処理時間は増加します。これは、船型に起因するものではなく、層数の増加によるものです。シェビシェフ層の導入の主たる利点は、教師データ数の削減に伴う学習時間の短縮にあります。船型が単純な幾何学的構造（直方体など）ならば、シェビシェフ層導入は必要ないと考えております。

一般に、ニューラルネットワーク利用の着目点として、汎化能力と情報蓄積能力が挙げられます。本研究では、主としてネットワークの情報蓄積能力を利用しています。従って、汐路丸と異なる船型の船に対する推定精度が悪い原因の一つとして、シェビシェフ層の導入を検討対象とする必要はないと考えております。