RTK-GPSのテレビ音声多重放送を
データ伝送に利用した測位

浪江 宏宗*・安田 明生**・笹野 耕治***

RTK-GPS Positioning by TV Wave of
Audio-MPX-Data-Broadcast

Hiromune NAMIE, Akio YASUDA and Koji SASANO

Abstract

A highly accurate positioning is possible with a cm order by RTK-GPS (Real-Time Kinematic GPS) which measures the range from satellites with the accuracy of mm order by a carrier phase detection. It is indispensable, however, to keep a high speed data communication link for RTK-GPS positioning. The authors tried to establish a data dissemination system by audio-mpx-data-broadcasting of TV wave. The data transmission time is random and placed between 0.743 and 1.317 s of which difference is corresponding to the transmission time of one packet of the multiplexed data. The 2dram and the vertical 2σ of the positions thus fixed are 2.5 cm or less.

1. はじめに

RTK-GPS (Real-Time Kinematic GPS) はGPS衛星を使用した測位システムである。測位の基本となるGPS衛星とGPSアンテナ間の距離差を測定するために、L1帯の搬送波位相を使用することで、誤差が数mm程度の精度で測距が可能となる。よって電波の伝搬時間は精度が良好な場合のDGPS (Differential GPS) よりも速く、高精度の測位が実時間で可能となるので、精密かつ実時間性を要する測位分野への利用が進んでいる。また、その利用の手軽さから建築や建設、測量分野等に応用され始めている。

RTK-GPS は非会員全東京商船会の米放送会議が推進するデジタル MCA (Multi Channel Access) 無線をデータ伝送に利用したサービスが実験段階に入り注目されている。

RTK-GPS をより広く普及させる実験・研究が行われている中で、今回著者らはこのデータの伝送手段としてテレビの音声多重データ伝送を利用することを提案した。このテレビ音声多重データ放送を測位用のデータの伝送手段として利用する利点は、データ伝送のために新しいメディアを用意する必要がなく、現行のテレビの音声の隙間にデータを多重するので効率的である。サービスの提供条件が基準局とデータ伝送手段を提供するため、利用者個々がアプリケーションに基準局とデータ伝送手段を用意する必要がないことが挙げられる。現在、RTK-GPS 対応受信機は非常に高価であり、また基準局のGPSアンテナを設置するためには環境の良い場所を選定し高精度に測量する必要がある。これは利用者にとって非常に負担となっていているが、これらの問題が解消される。このデータ伝送手段は通常のテレビ放送であるため、例えば東京タワーから放送されたデータは半径100kmの範囲で受信可能といわれており、現在最も多く利用されているであろう免許を必要としない特定小電力無線と比較しても、データ伝送範囲が非常に広範囲にわたって可能

* 学生会員 東京商船大学大学院（〒135-8533 東京都江東区越中島2-1-6）
** 正 会 員 東京商船大学（〒135-8533 東京都江東区越中島2-1-6）
***非 会 員 全国朝日放送ヘラ（〒106-0032 東京都港区六本木1-1-1）
であるといえる。また、テレビ放送波であるため、通常の安価なテレビ・アンテナで受信が可能であり、またそれを用意すれば複数の利用者が同時にデータ放送を受信することが可能である。これは、理想的なデータ伝送が可能であると考えられる。携帯電話を組み合わせて利用した場合の、送信側と受信側の1対1のデータ伝送と比較して非常に効率的である。表1に示すように、テレビ音声多重データ放送は他のデータ伝送手段と比較しても、実質的なデータ伝送速度が9.2kbpsと大きく、データの送信周期も0.577秒と実時間性が高い。これはディジタルMCA無線やテレビ文字多重放送などと比較しても、RTK-GPSのためのデータ伝送手段として過剰ないと考えられる。以上のように、テレビ音声多重データ放送はRTK-GPSのデータ伝送手段としては非常に有効であると考えられる。

測位用のデータとしては、RTCMがメッセージ・タイプの18〜21にデータ伝送フォーマット（以下RTCMデータ）を定めており（4）、このフォーマットに準拠したRTK-GPS対応受信機であれば、異なるメーカの受信機を同時に使用してもRTK-GPSが可能であるはずで、既にこのフォーマットのデータを受け取る受信機が市販されている。

一方、Trimble Navigation Limited（以下トリンブル）がION GNS-96で測位用のデータ伝送フォーマットCMR (Compact Measurement Record: コンパクト測観レコード) を公開した（5）、RTCMデータではデータ伝送量がおよそ5kbit/セット必要であるのに対して、CMRでは約1/5の1kbit/セット程度でなく、2400bpsのデータ伝送速度でも仕様通りの測位が可能といわれており、CMRは非常に有効であると考えられる。フォーマットを公開したとはいえ、他の受信機メーカが自社製の受信機にこのCMRに対応する機能を持たせるとは考えにくいが、CMRに準拠した受信機の利用が増大すれば、他のメーカも対応させることも可能であると考えている。

以上の状況下において、著者らは今回現行のテレビ音声多重データ放送を、現在世界的にも知られているRTCMデータ（メッセージ・タイプ1, 3, 18, 19）とCMRのデータ伝送手段に利用して、基準局と利用者局間が8km以下と短基線長であるが、このシステムを使用したRTK-GPS環境の実現可能性を検討するための基礎的な測位実験を行った。

表1 データ伝送方式の比較

<table>
<thead>
<tr>
<th>データ伝送方式</th>
<th>伝送速度</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>中波ビーコン</td>
<td>200bps</td>
<td>連続送信</td>
</tr>
<tr>
<td>FM多重（DARC）</td>
<td>6.38kbps</td>
<td>送信周期4.896秒</td>
</tr>
<tr>
<td>デジタルMCA</td>
<td>8kbps</td>
<td>通信速度制限</td>
</tr>
<tr>
<td>テレビ文字多重</td>
<td>約42kbps</td>
<td>-</td>
</tr>
<tr>
<td>テレビ音声多重</td>
<td>9.2kbps</td>
<td>送信周期0.577秒</td>
</tr>
</tbody>
</table>

2. 実験概要

図1に実験の概念図を示す。まず、東京都江東区越中島の東京商船大学・航海学科実習棟屋上（WGP-84にて北緯35度59分59秒 東経139度47分32秒 高度59.79m）に設置したGPSアンテナで追尾しているGPS衛星に対して、トリンブル社製4000SSE（以下4000SSE）もしくはASHITECH社製Z-12（以下Z-12）から1秒毎に出力されるRTCMデータを、モードを介して各電話回線を使用し、9600bpsのデータ伝送速度で東京都港区六本木
のテレビ朝日に送信する。テレビ朝日ではこのデータをテレビ音声に多重し、周波数209.75MHzで東京タワーより送信する。これを利用者局において通常のテレビ・アンテナで受信、テレビ音声多重送信用のデータ・デコーダDCD-45（以下DCD-45）でデコード後、それぞれ利用者局受信機に入力し1秒毎に測位を行った。なお、通信を維持するために基準局においてデータをモジュームに入力する直前に、利用者局においてDCD-45からデータが出力された直後に通信ソフトを起動させた計算機を接続している。測位地点はRTCMデータを使用した場合が都内3ヶ所、東京商船大学（基線長0及び約20m、4000SSE）、新宿区新宿のDXアンテナ（基線長約8km、Z-12）、及び港区浜松町のトリプルジャパン社（基線長約4km、4000SSE）であった。測位実験は日を変え、それぞれ計1時間以上行った。また、基準局と利用者局双方で4000SSEとZ-12を同時使用して数回測位を行い、異なるメカの受信機間でも測位が可能であるかについて検証した。

次にCMRを使用した場合は、4000SSEを使用して東京商船大学のみで基線長0（Zero-Base Line）と基線長約20mで、それぞれ5時間以上にわたって測位を行った。

更に、同図のデータに測位用データの先端にあたる瞬間から、同じデータの先端がDCD-45から出力される瞬間までの経過時間を、このシステム全体のデータ伝送時間として、ヒューレット・パッカード社製のユナイバーサル・カウンタ5313A（分解能5.00×10⁻¹⁰秒）を用いて測定した。

3. データ伝送時間

図2に今回のシステムのデータ伝送時間を示す。伝送時間は最大1.317秒、最小0.743秒であった。RTCMデータを使用した場合、利用局が4000SSEでは1.60秒までのデータ伝送遅延であれば短編通りの測位が可能であるといわれており、これを十分に満足していることが分かる。

また、同図より伝送時間は0.574秒（1.317−0.743秒）の幅を持ってランダムに分布しているが、これは基準局からの測位用データの送出タイミングと、テレビ朝日においてこのデータをテレビ音声に多重する際のフレームの同期を取っていなかったため、基準局から伝送されてきたデータとフレームの送出タイミングによって、テレビ音声多重データ伝送のフレーム送出に要する0.577秒の幅を持ったと考えられる。テレビ音声でデータを多重する際の同期を取ることができれば、データ伝送時間を0.74秒付近に安定させることも可能であると考えられる。

4. 実験結果と考察

RTCMデータを使用した場合、DGPS補正データ（RTCMメッセージ・タイプ1）が同時に伝送されているため、測位結果はデータの受信状況により、仕様通りの測位が実現されている1つの目安になると考えられる。 FFTモードのRTK-GPS測位から、精度の悪いFLOATモード、更に通常のDGPSモードへ移行する。 図3、4に示す測位結果を示す。図中には2日間にわたって行った測位の内、FIXモードの結果だけをプロットと直線で日を区別して図示している。

図3、4に示すDXアンテナ社での結果では、しばしばFLOATモードになるという状況が発生した。また、矢印で示す測位点が大きくドリフトしている時間帯は、測位に使用している衛星の数が5機から4機へと減少しており、これが原因であると考えられる。図5、6に示すトリプルジャパン社での結果では、しばしば通常のDGPSモードになるという状況が発生した。また、このとき測位結果に付されている測位時刻が、数秒前後の時間にジャンプするという状況が発生した。図7、8に示す東京商船大学での結果でも、しばしばFLOATモードとDGPSモードとなり、同じく測位のモードが切り替わるときにタイム・タグが数秒前後にジャンプするという状況が発生した。いずれも原因は不明である。他の2点と比較して、DXアンテナ社での測位精度が極端に悪いのは、測位に使用したZ-12でWalkingモードのフィルタを使用して測位
図3 測位結果I（FIX時水平方向）

図5 測位結果II（FIX時水平方向）

図7 測位結果III（FIX時水平方向）

図4 測位結果I（FIX時高さ方向）

図6 測位結果II（FIX時高さ方向）

図8 測位結果III（FIX時高さ方向）
Walkingモードでは利用者局が移動していると仮定してフィルタリングするので、静止状態で使用するとStaticモードと比較して精度が悪くなる。表2にこのときの測位時間とFIX率、及び測位精度をまとめて示す。同表よりRTCMデータを使用して測位を行った場合、DXアンテナ社での結果を除き2drmsが2cm以下、高度の標準偏差σも2cm以下という、仕様通りの高精度測位が実現されていたことが分かる。また、FIX率は89.3〜96.7%であった。

図9, 10に基準局と利用者局それぞれにおいて4000SSEとZ-12を同時に使用して測位を行ったときの結果を示す。図9は簡単にするため、それぞれ平均位置から2cmをずらして図示している。全て1時間以内の短時間の測位ではあるが、RTCMデータを使用すれば異なるメーカの受信機を使用しても高度測量が可能であることが分かった。しかし、基準局がZ-12で利用者局が4000SSEの場合はFIX測位は得られず、FLOATモードかDGPSモードのいずれかであった。また、他の場合でもしばしば単独測位のモードとなる場合が発生した。これは受信機のデータ入出力特性の違いによる、データの流れの不安定によるものではないかと考えている。表3にこのときの測位時間とFIX率、及び測位精度をまとめて示す。FIX率は85.0〜93.1%、2drmsは1.05cm以下、高度の標準偏差σも1cm以下であった。ここで、他と比較して測位時間は短かったが、CMRを使用した場合のFIX率と測位精度が他の場合と比較しても高かったため、特にCMRを使用して再度測位実験を行った。

図11, 12, 13にCMRを使用して測位を行ったときの東京商船大学における測位結果を示す。図11は基線長0（Zero-Base Line）、図12は基線長約20mであった。前者は基準局と利用者局が全く同一のGPSアンテナを使用して測位を行っているため、マルチパスやアンテナ内部雑音等による搬送波位相データへの影響が、基準局と利用者局で全く同一の大きさになることが予想される。よって、測位計算を行う際の二重位相差の処理により、これらの誤差が完全に相殺され、これらが影響が全くないかのような状態での測位が可能となり精度が向上すると考えられる。この測位精度はGPS受信機そのものの性能を示す1つの目安となると考えられる。図11〜13より基線長0での結果は基線長が約20mの結果と比較して非常に安定していることが分かる。表4にこのときの測位結果を示す。
位時間とFIX率、及び測位精度をまとめ示す。同表よりCMRではFIX率は99％であることが分かる。
CMRではRTCMデータ約5kbit/セットと比較してデータ伝送量が約1/5の1kbit/セットでRTK-GPS測位が可能であり、このため伝送誤りに対して強くFIX率が高いと考えられる。2drmsはそれぞれ0.191cmと0.913cm、測位高度の標準偏差σはそれぞれ0.114cmと0.887cmであり、RTCMデータを使用した場合と比較しても、非常に高精度な測位が実現されていることが分かる。

5. まとめ

RTK-GPSでは基準局から利用者局へ測位用データを伝送する必要がある。そこで著者らは現在よく知られているRTCMデータとCMRを、データの伝送が広範囲に行える、データ伝送速度が速い、実時間性が高い、複数の利用者が同時に利用できるなど様々な点で有効であると考えられる現行のテレビ音声多重放送で伝送して測位する実験を行った。

今回構成したシステムの全体のデータ伝送時間は最大で1.317秒であった。RTCMデータを使用した場合、4000SSEでは1.60秒以下のデータ伝送遅延であれば、仕様通りの測位が可能であるといわれており、これを十分に満足していた。また、FIX率は90％前後であった。この間の測位精度は2drmsで2cm以下と、仕様通りの高精度測位が実現されていたことが分かる。また、RTCMデータを使用した場合、短時間ではあったが異なるメカの受信機を

<table>
<thead>
<tr>
<th>CMR</th>
<th>測位時間</th>
<th>FIX (%)</th>
<th>2drms(cm)</th>
<th>高度σ(cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>基線長0</td>
<td>5時間6分</td>
<td>99.3</td>
<td>0.191</td>
<td>0.114</td>
</tr>
<tr>
<td>基線長20m</td>
<td>5時間49分</td>
<td>99.1</td>
<td>0.913</td>
<td>0.887</td>
</tr>
</tbody>
</table>
使用しても測位が可能であることが確認された。
次にCMRを使用した測位では、FIX率は約99%であった。この間の測位精度は2 drmsで1cm以下と、RTCMデータを使用した測位結果と比較しても高精度であった。CMRはRTCMデータと比較してデータ伝送量が少なくて済むため、非常に有利であると考えられる。
以上の結果より、デジタル音声多重放送をデータ伝送手段として利用し、基線長が8km以下と比較的短基線長であるが、仕様通りの測位を取得できるシステムを構成することも可能であるという結論を得た。
今後、このシステムをより一般に普及させるために、測位結果がFLOATモードへ移行する原因を追求し、FIX率を向上させる必要があります。また、2 drmsが2cm以下で、建築測量分野で利用が可能なエリアを調査する必要があると考えている。

謝辞
最後に実験に御協力頂きましたエル・エス・アイ・ジャパン社の田中隆氏、トリンプル・ジャパン社の福田昌史氏、小神野和貴氏を始めとするDXアンテナ社の皆様に謝意を表します。

参考文献
(1) 浪江宏宗・安田明生：KGPSの高精度測位維持に関する研究～共分散枠内95％誤差枠内の比較～、日本航海学会論文集第95号、pp.1-6、平成8年9月25日。
(2) 坪井広美・岡本修：リアルタイムキネマティックGPSのケーハン沈設工事への適用、日本測量協会、応用測量論文集Vol.7, pp.21-28, 1996年6月24日。
(3) 安田明生・浪江宏宗・岡村知則・新井貴之：DGPS補正データのデータ放送による伝送、日本航海学会誌NAVIGATION第128号、pp.48-54、平成8年6月25日。

質疑応答
山田多津人(海技大学校)：RTCMとCMRのフォーマットの違いによる測位結果を比較されていますが、測位時間が違うと衛星数が変わり、FIX率等に影響を与える（衛星数が多ければFIX率が高くなる）と思われますか？

浪江宏宗：今回の測位実験では5時間以上にわたって測位したもののがほとんどで、この間に測位計算に使用しているGPS衛星の数も組み合わせも次々に変化しており、衛星数によるFIX率等の影響は無視できるのではないかと考えております。厳密には山田先生のおっしゃる通り、衛星数やDOP等の状況も考慮する必要があると考えております。今後の検討課題とさせて頂きます。

和気博司(神戸商船大学)：図2のデータ伝送時間のパラツキが最大1.33秒最小は0.74秒にサンプルに対しつしゃつ一線の幅をもっているが、この意味を問う。

浪江宏宗：本文中に記述致しましたが、これは基準局からの測位用データの送出タイミングと、テレビ朝日においてこのデータをデジタル音声に多重する際のタイミングの同期を取っていないため、デジタル音声多重データ放送1フレーム送出に要する0.577秒の幅をもってランダムに分布したと考えられます。デジタル音声にデータを多重する際の同期をとることができれば、データ伝送時間を0.74秒付近安定させることも可能だと考えております。