The Study about the Effect on Student's Training of Ship Maneuvering Simulator
—Valuation Law and Training Effect of Slalom Ship Maneuvering—

Hiroki IWASAKI, Keisuke TSUJI, Yasumi KOTHO and Yoshitaka FUKUO

Abstract

In the train an operation using the ship maneuvering simulator, we pick up the slalom ship maneuvering.
We got train the slalom ship maneuvering for 3 ship maneuvering beginners.
On the other hand, we quite concretely presented a proposition of this slalom ship maneuvering
and found out an ideal operation law that there is with fast-simulation.
For this, we decide to say a model maneuvering of slalom ship maneuvering .
We compared the two, phase aspect traces of a model maneuvering with the beginner’s maneuvering.
We drew the next three phase aspect traces and calculated matching.
There are phase aspect traces of \(p(a) \) (ship course) \(\cdot r(q) \) (circling angular speed), \(r \cdot \dot{r} (p) \) (circling corner acceleration) and \(y(h) \) (horizontal speed).
Every training, we averaged their matching and tried to observe the change.
We were able to confirm that the matching gets good, every time we experience a number of times of a training for the beginners.

1. はじめに

操船シミュレータの利用方法として、操船訓練に用いる場合を考える。操船訓練も船の操縦特性の把握
や離着桟操船、ブイアプローチ等の操縦訓練と、応急操舵、緊急避難等の総合的な危機対応訓練とが考えられる。ここでは、操縦訓練を取り上げる。
一方、これら訓練の内容と訓練の評価は表裏一体と考えられる。訓練の練度を効率よくあげるためには、
具体的でかつ、訓練者の練達を促すような評価を施す必要がある。また、評価値として具体化できても、
訓練者の練度の違いによって、操船技量としての乗り越えるべき壁を高くしながら設定することで、訓練者間で難易度を変えることができる評価システムをも用意する必要がある。ここで、もし悪黒な評価方法

* 正会員 大島商船高等専門学校（〒742-2193　山口県大島郡大島町小松1091-1）
**正会員 濱部船海洋科学（〒140-0004　東京都品川区南品川2-3-6）
がとられれば、訓練者とインストラクター間に不信感が生まれ、おさなじみの訓練化し、訓練の効果は期待できないであろう。

ここで、「良い評価を下す」インストラクターの条件とは何かを、引用して載せてみる。その条件の一つは、訓練生が納得できる評価を下すことである。ポイントをすぐに“けたず”こと、そして“はめる”こと。つまり、「ここは、こうはずかった。しかし、次のにカバーはこうよかった」と。そうすることで、訓練生のやる気を引き出し、次回への目標を与えることになる。条件の２つめは、良い提案を訓練生にすかさず与えることである。訓練生の失敗を直すために、具体的で的確な方策を提示し、目的前で実証してみせること。そうすることで、訓練生の信頼を勝ち取り、テクニックを伝授することができる。

このような「良いインストラクター」の手元には、最終的に評価値が一つであるような評価方法ではなく、客観的で時系列的に連続して、しかも、リアルタイムに評価値が打ち出されるような体制にすることが望ましい。

本報告では、訓練はスラローム操船に限定し、対象者は操船初心者3名、対象船も220GT型練習船のシミュレーションモデルと、訓練の内容を固定してみた。これら固定された訓練シナリオに対し、スラローム操船訓練の評価方法を、上述の点に留意して具体的に提案するとともに、その評価方法を用いて訓練の上達効果を明らかにする目的とする。

2. スラローム操船と評価法

2.1 スラローム操船と操船手本

今回、訓練に用いたのは、220GT型練習船シミュレータモデルである。当該練習船の主要目を図1に示す。そこでいうシミュレーション操船とは、図1に示すように、スタンバイ（初速9kts）で300m（約8L）の助走を保つする。その後、200m間隔（約5L）のブイ列を4個右、左と交互にずり抜けていく。この練習に関わらせられた問題は、ブイに接触せずに、航跡が正弦曲線状になるように、船ののぞきを用いてスラロームさせ。そのとき、ブイとの間隔を少なくとも50m（約1L強）とせよ。なお、スラロームのための操船は300mの助走後に始まり、操舵角の大きさ、取るタイミングは自由とする。』であった。

この課題を忠実に遂行するとき、もし操舵のタイミングを決めたとするとき、おずと取るべき操舵角は、ある値に絞られる。そこで、同シミュレーションモデルに対して、操舵のタイミングを限定し、

![図1 スラローム操船と操船手本](image)

表1 練習船大島丸の主要目

船長L	38m
船幅B	7.6m
方形係数Cb	0.5
嘘水d	2.7m
船速U	S/B Full 9.0kt
公試験 Full 12.85kt	

<table>
<thead>
<tr>
<th>旋回テスト (上段：port、下段：starb'd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大縱距</td>
</tr>
<tr>
<td>最大横距</td>
</tr>
<tr>
<td>最大縦距</td>
</tr>
<tr>
<td>最大横距</td>
</tr>
<tr>
<td>Zテスト：</td>
</tr>
<tr>
<td>T' = 0.35</td>
</tr>
</tbody>
</table>

NII-Electronic Library Service
そのタイミングでの理想的な舵角をフォースシミュレーションで模索して得た操船結果が図1である。これを操船手本と言うことになる。この操船手本は、唯一無二のベストな操船とは断言できないが、対象船については対象問題を遂行するうえで、極めて見切りのよい操船であることは違いない。

さて、操縦訓練としてのスラローム操船の内容は、ブイに接近してくると、対象船の現速度における操縦特性に応じた舵角を示す。そして、目的の針路をいったん回転を納めるとやせて舵等を施す。これを、左右交互に繰り返しながらブイ間をぬって航行する。このとき、ブイとの距離距離yも離れすぎず、近すぎずとコントロールを強いる。つまり、その時々の制御手段としての舵角 dは、これらp、r、yのいずれかを、または複合的に制御するために実行された制御量にかかわらない。さらに、いったん起こした角速度 dを赤めながらブイ間をぬって操船することから、角速度 rを起こすために操縦してから、角速度 rがゼロにおさまるまでをステージと定義する。本スラローム操船では、6ステージに区分けることができる。（図1中の[]で区切られた領域がステージ）左右が違うだけで同じ操縦内容に思える各ステージも、ブイをかわしていただくに船速が低下していくことから対象船の操縦性能は変化し、操船法や操縦タイミング等の制御方法を、変えていかなければならないということになる。

2.2 位相面軌跡

制御工学で広汎に用いられている位相面解析法は、線形近似を行うことなしに、非線形運動の厳密解を得られる特徴を持つ。田中ら3,4は、作用、逆スパイラル実験で得たp-r、r-tの位置対数を用い、非線形性の強い進路不安定性の船のジグザグ操縦運動に制御対応できる二次非線形運動方程式のパラメータ同定が可能となることを示した。又、野本ら2は、実船の2実験結果の角速度時系列を用いて、同様に運動方程式の同定を具体的に解析する方法を提案している。一方、オートパイロットの基本原理にみられるPD制御においても、目標針路を現針路との差pと角速度 rによって、針路を帰還制御している。これも、変数とその微分値という位相面の関係となっている。これらのことから、針路pや角速度 r等適切な2変数を選んだ位相面軌跡では、舵に対する対象船の操縦特性（時間応答特性はわかりにくい）はもちろん、船体運動の規模や制御推移を表していることになる。

では、今回のスラローム操船手本のp-r位相面軌跡を図2の上段に示してみる。右、左とスラロームしているため、軌跡はゼロから左周りにヒステリシスカーブ状に同じ軌道を周回することになる。又、図2の2、3段目には、同様にr-t、y-t位相面図を示す。このジグザグ運動の位相面軌跡に限れば、船速が徐々に落ちてくるにもかかわらず、スラローム運動の規模をどのように相似的に繰り返し、又p、r、y等主だった船体運動パラメータをコントロールした（下線部を以下、船体運動の規格と推移等と記す。）が、つぶさに確認できる。

ここで、対象船及び対象問題を同じとした操船の結果として、2つのp-r位相面軌跡があり、まったくこの2枚が同一であるとする。では、この2枚の図ととなったそれぞれの操船内容は、はたして同じといえるのかどうか。

p-r位相面軌跡における船体運動の規模と推移等
は同じといえるが、そうなるための操船制御量は操
船者の裁量の範囲なので、舵角の大きさやタイミング
まで同一だったとは言えない。つまり、片方が他
に比べ操船のタイミング早ければ、小さな舵とし
たはずだし、タイミング遅ければ大きな舵をした
からこそ、p・r位相軌跡が同じになった。もちろ
ん、この2操船に対しての外力等の積分要素に違違
があれば、航跡にはオフセットが生じてくる。しか
し、シミュレーション操船であるため、外力等の違
いの問題は解消できる。さらに、p・r位相軌跡だけ
でなく、他のパラメータも加えた位相空間での操船
の比較を行い、それらが酷似していれば、船体運動
の規模や推移等はもちろ、航跡もクローン的に相
似形となってこよう。

これらのことから、操船命令やチェックポイント
を多少詳しく具体的に与えたとする。そうすること
で、それら操船命令を満足する船体運動の規模と推
移等は、ある程度論じ込める。この中の一つを操
船手本とし、船体運動の規模や推移等を示すパラメ
ータを選び、手本の位相軌跡として準備しておく。

そうして、訓練生の操船で、『どこを失敗して、ど
こがうまくいったか、失敗をどのようにリカバーし
たか』などは、この操船手本の位相軌跡と訓練生の
同軌跡とがどれだけかが離れているか、どこが追従
しているか、かけ離れていた同推移等がどこで追従
してきたか等を比較することで、タイミング的に
質的に抽出できるものと考えた。

2.3 スラローム操船の評価法

図3 a)に、訓練初期でのX君のスラローム操船結
果を示す。図の上1段は航跡と操舵角及び針路の時
系列である。一方、下2段は、彼の操船を6ステー
ジに分け、各ステージでのp・r位相軌跡を破線で
示している。なお、図中の実線は操船手本の同位
相軌跡である。先に述べたように、これら位相
軌跡は反時計回りに周囲して描かれることがある。
同様に、r・t、y・v位相軌跡も図3のb)にのせて
みる。

この操船は、第3ステージまではうまくいった。
しかし、第4ステージ時、先のステージの時と同じ舵角で切り返したのが大きすぎたのか、ブイ手前で針
路変曲点を向かえてしまった。第5ステージも舵角が大きく、ブイに接近することになり、ブイとの離隔
及び大きさを許されなかった。やはり、Y君に限らず、初心者にとっては第1、第2ステージの繊細が複雑に絡ん
でき、船体を駆動する後半のスラロームはなかなかうまくいかない。しかし、このような従来の評
価では、訓練生の全員が全員に問題意識を持たせ、真剣に訓練で操縦の技を鍛錬されながら、合理的
に訓練効果をあげることにはならないと考える。

そこで、題目に対して、まずは推奨できる船体の運動規模と推移等としての操船手本と、同訓練生の結
果を、各ステージ毎に比較する方法を以下、箇条書きに示す。

1) 比較する2操船結果を、それぞれ6つのステージに分ける。各ステージ毎にp・r、r・t、y・v等の位

\[834\times 595]
相面軌跡を並べて描く。
2) 同2の位相面軌跡は、それぞれ所要時間が異なる。本操船命題では、操船要時間の短い方を必要とせず、所要時間まで操船手本に合わせる必要はない。これについても、評価方法に時間が最も極端は取れないことにした。さらに、各ステージの位相面軌跡の変曲点等は、操船のポイントでもあるため、互いに比較しうる。他のポイントは所要時間の短い方に長い方があわせるべく、可能な限り等に長さを間隔して比較対象の2点を選出した。
3) 比較の方法は、位相面軌跡中、比較対象の2点の座標を無次元化する。例えば、p−r位相面における無次元化の方法は、
・操船手本の各ステージ中のp、rの最大値の絶対値を調査する。
・比較対象点での訓練生のp値と操船手本のp値とを差し引いて計算。rについても同様に差を計算。これらの差をそれぞれの操船手本から得た最大値で除し、百分率で表す。このとき、最大値を用いるのは、各ステージの船体運動の規模を比較し、その規模に対する手本との食い違いを百分率で表すことから、他のステージとの比較を、ひいては他の操船の比較を可能とするためである。
・この百分率化された手本の2差値を2乗和し、ついてその和の平方根を算出する。つまり、位相面軌跡上で比較対象2点の座標を無次元化し、2点間の距離を算出したことになる。これを、操船手本に対する非マッチング率(以下、非マッチング率)と定義することにする。
この非マッチング率を逐次計算することにより、同値が小さければ、本位相面パラメータでの船体運動の規模や推移等が、操船手本のそれと、おおよそ合致していたことを示す。また、同値が大きくなると、手本からかけ離れた船体運動になってきていることを表している。

3. スラローム操船の評価結果と訓練効果

図4 a）には、訓練もだいぶ進んだ北区の例を示す。上1、2段目には舵角、操舵角と針路の時系列である。下2段は、各ステージ毎のp−r位相面軌跡で、実線が操船手本、破線が本人のものである。又、図4 b）は、p−r、r−r、r−p、y−r、y−p、y−p各位相面軌跡から得られる操船手本と本人操船との非マッチング率の時間推移である。なお、同図 a）のp−r図中の△−△のマーカー同じく操船、舵点と針路図並びに同図 b）のp−r図中でのハートフォームで塗られた領域、これらはすべて対応しており、いずれもp−rの非マッチング率がどちらも悪いとされている箇所である。
この操船船では、旋回運動を右、左にスイッチするための操舵角としては、少し大きすぎた。だからこそ、大きな舵をとらざるを得ないし、その当及び舵のタイミングを誤ると大きく運動がずれてしまうおそれがあった。一方、大舵をいったんゼロに戻して旋回運動の様子をみるなど、ゼロ付きパルプ制御をすらの様子を採用するなどして、ブイ間を無関
にはすり抜けた。さらに、大きく見本よりずれそうになり窮地となると、当て舵をすかさずとっている。その当て舵の取り方が非常によく、ある時は当て舵の効きを確認しながら、徐々に増やしたり（図4 a）操作舵図の中の一、思い切ってといった当て舵を徐々に減少したりしており（同図中*印）、旋回運動のコンストロークに努めている点が見受けられる。特に、訓練初期では降参してしまうことが目立った、第3、4ステージ等後半での取り返せなくなるような失敗も、そうなるまでに処方し、リカバーしている点もはめに良い。

なお、今回の訓練では第6ステージの現針路復帰が、どの訓練生も不調に終わっている。これは、ライント訓練後船尾を振り返って、ブイ列を追い越すことがシミュレーションではできなかったことに起因している。したがって、第4ブイ通過後、現針路角度に対するだけの操船しか行っていない。結果として見通しがくろってしまった。一方、この不調に終わった第6ステージのb-rでの評点は、さほど辛くない。しかし、bやy、vは操船見本とは次第にかけ離れていったため、非マッチング率は低下している。

図5をみて欲しい。これは、10回のスラミュ訓練毎にp-r、r-f、y-vの非マッチング率の平均を図り出す。そして、3名の訓練生ごとに、訓練回数を横軸にとり、プロットしたものである。

A君はスラミュ操船におけるp、r、yのコントロール、いずれも訓練が進むとともに上達していることが判る。Y君も、9回目のブイ接触こそはまぬかれたが完全に操船を失敗したケースを除けば、右下がりの傾向が見て取れる。一方、K君であるが、p-r、y-v図に見受けられるように、本対象船に関しては当初から操船の勘がよく、『本対象船に関しては当初から操船の勘がよい』（郵船海洋科学館）の様に操作がよく、3グラフとも、訓練が進んでもおおよそ横ばいの様相であった。

4．おわりに

本報告では、操縦訓練のうち、スラミュ操船を取り上げ、その操船結果の評価方法を提案した。まとめると、

1）操船シナリオの命題を具体的に与え、ファーストシミュレーションでもって、その命題を満足する操船見本を割り出した。
2）操船見本での船体運動の規模と推移等を表すパラメータを選出し、その微分値とともに位相面軌跡を用意する。なお、同軌跡を6ステージに分割し、各ステージごとの評価を試みた。
3）訓練生の操船結果の同位相面軌跡と、見本操船の同軌跡とのマッチングをみるべく、2軌跡の比較対象点を選出した。そして、同対象点同様の無次元化された距離を算出することで、非マッチング率を定義した。
4）訓練生の操船に対応した非マッチング率の時間推移を眺めることで、本操船のうまくいった箇所、失敗した箇所、失敗をリカバーした箇所等、かなり詳しく評価できる可能性を示した。
5）例えば、この時系列的な操船評価の平均値を当操船の総合評価点とすると、訓練の回数をこなして、確かにその効果を目にみえる形で表すことを紹介した。

しかし、今後の問題点も残されている。

1）スラミュ操船の評価には、p-r、r-f、y-vの3位相面軌跡が有効である。しかし、他の操縦訓練での操船評価パラメータ及び、位相面パラメータの選択は今後の課題である。
2）いくつかの位相面軌跡から割り出された、操船評価としての非マッチング率、これらをさらに統合

図5 非マッチングでみる訓練効果
する方法を見いだすべきである。それは、操縦訓練每に評価重要度という観点からウェイトを定めるることになる。このウェイト決めには、操船インストラクター等の主観的な考えや、訓練生らの蓄積された統計値等の客観値を盛り込んで決定する必要がある。
3）これら評価は時系列的に、リアルタイムに打ち出されてくることが望ましい。今回は、訓練生の操船後の分析の結果であって、リアルタイムの評価ではない。評価の自動化を含めたリアルタイム化を実現しなければならない。

最後に、操船訓練生として夏休みを裂いて繰り返しスラローム操船に挑んだ、当時大島商船高校商船学科5年生の3学生に感謝に意を表したい。又、これら操船初心者らに、プリーフィングという形式で操船指導をしていただいた郡船海洋科学部長尾キャンプ村に紙面を借りてお礼を申し上げたい。

参考文献
(1) 辻・岩崎他：操船シミュレータ訓練効果に関する研究，日本航海学会論文集，第96号，pp.111～118，1996。
(2) 福井幸男：カネのかからない情報教育の展開，情報処理教育研究集会講演論文集，pp.189～192，平成4年。
(3) 田中・小瀬：船の操縦運動の位相面解析，関西造船協会誌第147号，pp.83～90，昭和48年。
(4) 野本・小瀬・芳村：Z試験の新しい解析法，日本造船学会論文集，第134号，pp.183～192，昭和48年。

質疑応答
小林弘明（東京商船大学）：「スラローム操船」は、今までも操船訓練シナリオとしてよく用いられてきた。では、実際の操船現場では、どんなテクニックを訓練し、役立っているのか、教えて下さい。
岩崎寛希：スラローム操船時は、針路 p と旋回角速度 r が横変位 y を、その時の船速や舵効きや舵角 d で制御しています。したがって、スラロームがうまくいくということは、実海域では変針操船、平行移動操船等に役立つものと考えます。