AIS の潜在的な課題の抽出
(ClassB 導入に向けて)

山下 武広

Potential Problems on AIS System

Takehiro YAMASHITA

キーワード： 無線衝突、周波数、MMSI

1. はじめに
SOLAS 船における ClassA の装備が一通り完了し、今日では、AIS の有効性は広く認められるところとなった。AIS は既に航海に欠かせないものになりつつあり、今後は、ClassB、航路標識、SART などで多く展開され、更なる有効利用がなされてゆくであろう。本稿では、このような中で、今後予想される AIS の課題、特に ClassB 導入時に顕著に現れてくる課題について述べる。

2. データの欠測
2.1 スロットマップによる欠測の様子
AIS の通信の様子を可視化してみたい。まず、SOTDMA [Self-Organized Time Division Multiple Access]の概要を説明する。図 1 に SOTDMA のスロット予約の概要を示す。SOTDMA は 1 コーデー（1 分間）を基本としている。10 秒レートで送信する場合は、1 分間に 6 回のスロット予約を行い送信することになる。また、送信する際には、1 分後の同じスロットを後何回使用するかを、タイムアウトという数のメッセージの中で示している。これに他船局がモニタすることによってスロット予約の衝突を回避している。図 2 は、実際にある海域での SOTDMA の予約状況を解析したもので、我々はこれを “スロットマップ” と呼んでいる。横軸は 1 コーデー中のスロット No.を表し、縦軸はフレーム No.を表す。データ中の数字は、受信されたメッセージの中のタイムアウトを表しており、SOTDMA で整然とスロット予約されている様子が確認できる。AIS トランスポンダ内部では、この予約状況を常に解析し、空きスロットを探して、予約に利用している。また、“R” は RATDMA [Random Access TDMA]で送信されたメッセージ（静的情報の Messege5 など）が受信されたことを表している。ここで、図 2 中のスロット No. 212 に注目する。SOTDMA では、タイムアウト[0]となるまで同一のスロットで送信されるが、タイムアウト[2]、タイムアウト[1]が受信できていない。これは自船から遠距離に位置している船船などに多く、受信レベルが下がり、受信できたり、できない場合に多く見受けられる現象である。次に、スロット No. 203 に注目する。このスロットでは、2 つの船舶が同一のスロットを予約しているのが分かる。これは、この 2 隻の船船がお互いに受信できる位置関係にないことが、原因と考えられる。このように SOTDMA といえども完全な衝突回避を実現しているわけではない。また、静的情報を送信する RATDMA は、予約なしに送信をおこなうため、原理的に衝突の危険を有している。すなわち AIS の通信は無線衝突が起こることを前提としたシステムとなっている。

余談であるが、ClassA の静的情報を送信する Message5 の送信は、ITU-R M.1371-1 では RATDMA であったが、ITU-R M.1371-3 では ITDMA [Incremental TDMA]で予約送信することを要求しているので、スロット衝突による船名などの欠測
は、ある程度改善されると思われる。

が導入された場合のほうが、UTC同期誤差によるスロット衝突の可能性が大きくなることを意味している。

3. ローカル周波数運用
東京湾においては、地域周波数（CH2079 / CH2085）運用を行っており、湾内ではAISトランスポンダはこの周波数で送受信をおこなう。ここで、AISトランスポンダが地域周波数に切り替える方法としては、まず、国際チャンネル（CH2078 / CH2088）で地域周波数情報を受信することが必要である。通信用は東京湾に入港時に外洋に面している基地局からMessage22により地域周波数情報を得る。Message22には地域周波数運用のためのエリア情報、チャンネル情報などがあり、そのエリアに移動して初めて地域周波数に切り替える。これにより、東京湾で初めてAISトランスポンダの電源が投入される場合もあると思われるが、この場合は東京湾内での国際チャンネルで動作をはじめる。

これまでAISが装備される船船の多くはSOLAS船で装備されるアンテナ位置も高いため、東京湾内でも外洋の基地局からの国際チャンネルによる地域情報の受信も可能であった。また、仮にその時受信できなくなると、多くの船船は東京湾を出入るする機会が多く、その時に外洋の基地局から周波数情報を入手できた。しかし、最近では
SOLAS 船以外に AIS トランスポーナを装備している船舶も多く、東京湾内で海域周波数に切り替わらないという声も聞かれるようになった。ClassB では更に、基局からの領域情報である Message22 にのみ海域周波数の登録が可能であり、マニュアル入力での一時的な変更は不可能となっている。このため海域周波数への変更は、基局の情報を受信するか否かにかかっている。

これらを解決するためには、東京湾内における国際チャンネルによる海域周波数情報の送信、DSC の利用、もしくは海域周波数運用そのものの見直しも必要ではないかと考える。また、我々が羽田沖にて海上実験をおこなった場合にも同様の症状となった。写真 1 はそのときの様子で、小型船舶による実験であったため、基局からの Message22 の受信による海域周波数への変更が示されることはなかった。

写真 1 小型船による実験の様子

4. MMSI の導入

図 5 は、シンガポール沖を航行した船舶で受信された実際の AIS データ再生表示させたものである。図 5 の円で示した場所は MMSI が "000000000" の船舶がほぼ同じ時刻に現れる場所である。このデータでは、自船から 12NM 以内に 4 隻の同一 MMSI を持つ AIS 搭載船舶が確認できた。この他、MMSI が "999999999" であるなど、明らかに運用されるべきでない MMSI が 6 種類観測でき

AIS の場合、個体の識別は "MMSI" のみに由来している。操船者にとっては、"船名"、"コールサイン" が個体を識別するには有用であるが、レーダ・ECDIS などの機器内部では MMSI を元にデータベースを管理（個体の識別）しているものが多い。よって、MMSI が同じ船舶は、船名が異なっていても同一の船舶として認識される場合がほとんどである。

ここで、同一の MMSI を持つ 2 隻の船舶が受信可能な状況にいる場合を考える。レーダ・ECDIS などでは、MMSI を順に表示するため、現在位置の異なる 2 隻を代わりに表示し、操作者から見れば、幽霊船のように映るであろう。特に問題となるのは、一方の船舶が、自船の近傍に近づき、注目すべきターゲットとなった場合である。レーダ・ECDIS が、この船舶に対して危険なターゲットと認識していても、もう片方の安全な位置にいる船舶のメッセージが受信された時点でその警報は解除されてしまう。

これを回避するには、機器内で MMSI だけに限らず船名、コールサイン、位置情報なども考慮しデータベースを管理する方法もあるが、1000 隻以上を一度に管理しなければならない AIS のシステムでは、現在の CPU パワーと処理負荷を考えると、MMSI のみに頼らざるを得ない。また、動的情報と静的情報は別々のメッセージで送信されるため、この情報を結びつけるのは、MMSI 以外のない。ClassB 導入により、SOLAS 船以外の多くの船舶にも AIS が装備されてゆくが、これらの船舶でも MMSI の入力を正しく行うことが求められる。

USA の AIS 認証機関 FCC では、ClassB 導入に
伴い、これを重く受け止め、ClassB トランスポンダ認証の際に、図 6 のような警告ラベルを AIS トランスポンダに添付させることによって、MMSI の正しい入力をさせるように努めている。

![WARNING: It is a violation of the rules of the Federal Communications Commission to input an MMSI that has not been properly assigned to the end user, or to otherwise input any inaccurate data in this device.]

図 6 FCC が要求する警告ラベルの例

参考文献
(1) Technical characteristics for an automatic identification system using time division multiple access in the VHF maritime mobile band, ITU-R M1371-3, ITU, 2007
(2) Maritime navigation and radiocommunication equipment and systems - Automatic identification systems (AIS) - Part 2: Class A shipborne equipment of the universal automatic identification system (AIS) – Operational and performance requirements, methods of test and required test results, IEC 61993-2, IEC, 2001 (E)
(3) Maritime navigation and radiocommunication equipment and systems – Class B shipborne equipment of the automatic identification system (AIS) – Part 1: Carrier-sense time division multiple access (CSTDMA) techniques, IEC 62287-1, IEC, 2006 (E)

山下 武広
非会員 古野電気株式会社 船用機器事業部開発部 〒662-8580 西宮市芦原町 9-52
takehiro.yamashita@furuno.co.jp