車いすの乗船における人体への負荷及び挙動に関する研究

岩崎 勝哉

A Basic Study on Load to Human Body and Behavior Influence on Wheelchair

Katsuya IWASAKI

キーワード：バリアフリー，車いす，人体，負荷，船体動揺

1. はじめに

近年では公的施設におけるバリアフリー設備の設置が義務付けられ，車いすでの移動の利便性は大きくなっている。フェリーなどの船舶では，海上と異なり乗船時の傾斜や波浪による動揺も起こるため，人体への負荷や危険も大きくなると考えられる。そこで，本研究は船舶の動揺や車いす利用者にかかる負荷を測定し，車いす利用者を取り巻く環境とその問題点を調査した。

2. 乗下船時のアプローチの問題と傾斜張力測定

瀬戸内海では日本海や太平洋と比べて潮位差が大きく，カーフェリー等が就航する港湾では浮桟橋を設置しているが，潮位差によって浮桟橋の傾斜が大きく変化する。そこで，傾斜による車いすにかかる重力を測定し，傾斜角に対する負荷を算出した。

計測の結果，ハートピル法で規定されている陸上での傾斜基準に対し，瀬戸内海の大潮時において，負荷は約3.5倍にもなることがわかった。よって，穏やかな瀬戸内海であっても必ず支援が必要となることがわかった。

3. 走行中に発生する動揺測定実験

車いすを乗船する際には固定具を使用して固定するが，実際には車の動揺に同調して車いすごと動揺する環境にある。この動揺測定実験では，車いすで利用する事が多いと思われる自動車，フェリー，小型高速船「ひかり」での走行時の動揺（スウェイング，サージング，ヒーピング）の3方向の加速度についての測定を行い，乗船中の車いす利用者を取り巻く動揺環境を調査した。

船舶は航行中，停止や発進ができず，定められた針路を航行するため変針することがなく，左右揺れや前後揺れが大きく動揺も一定になることが分かる。

4. まとめ

最も利用されると考えられるフェリーでの動揺が少なく，小型船での航行や浮桟橋でのアプローチが問題とされることが分かった。また船舶利用時の車いすの固定基については，フェリーの場合は電動式固定具でも十分であると考えられるが，小型船においては上下揺れを考慮した固定具が必要であることがわかった。これらを使用することで，車いすの転倒や事故を防ぎ，人体への危険も軽減できると考えられる。

参考文献
(1) 宮崎 恵子，平田 宏一，今里元信，太田敏，足田 賢次郎，池本 義範：バリアフリー旅客船に関する一考察，日本機械学会第10回交通・物流部門大会講演論文集，pp.333-336，2001.12

* 広島商船高等専門学校商船学科