日本金属学会誌
Online ISSN : 1880-6880
Print ISSN : 0021-4876
ISSN-L : 0021-4876

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

乳がん溶骨型転移による骨基質配向性低下
関田 愛子松垣 あいら中野 貴由
著者情報
ジャーナル フリー 早期公開

論文ID: J2017003

この記事には本公開記事があります。
詳細
抄録

Bone matrix exhibits highly anisotropic features derived from collagen/apatite orientation, that determine the mechanical function of bone tissue. Breast cancer is highly metastatic to bone tissue and causes osteolytic lesions through osteoclast activation. Nevertheless, the effects of osteoclast activation induced by cancer bone metastasis on bone microstructure, a notable aspect of the bone quality, remains uncertain. In the present study, the effects of osteolytic bone metastasis on the anisotropic microstructure of the bone matrix, particularly the integrity of collagen fibril orientation was investigated. Interestingly, hyperactivation of osteoclasts was induced by osteolytic breast cancer cells both in vivo and in vitro. The cancer cells-derived conditioned medium induced an increased number of nuclei and more specific podosome structures in osteoclasts. These results indicate the resorptive capacity of a single osteoclast was abnormally upregulated in the cancer-mediated environment, causing a geometrical aberration in resorption cavities. Histological studies on mouse femurs with metastasis of breast cancer MDA-MB-231 cells revealed that the osteoclasts in the metastatic bone were abnormally large and they generated resorption cavities that are irregular both in size and in shape. Notably, collagen matrix in newly formed bone in the metastatic bone exhibited a significantly disorganized architecture.

Fig. 1 Fullsize Image
chematic illustration of the analysis of the alterations in osteoclast biology and bone microstructure involved in cancer.
著者関連情報
© 2017 (公社)日本金属学会
feedback
Top