日本金属学会誌
Online ISSN : 1880-6880
Print ISSN : 0021-4876
ISSN-L : 0021-4876
銅多結晶の内部摩擦の振幅依存性に及ぼす結晶粒径の影響
後藤 肇西野 洋一浅野 滋
著者情報
ジャーナル フリー

1991 年 55 巻 8 号 p. 848-852

詳細
抄録

Internal friction in polycrystalline copper varying grain size was measured as a function of strain amplitude at around 700 Hz by means of the free decay method of flexual vibration. The curves of the amplitude dependence are found to shift to higher amplitude with decreasing grain size. The data are analyzed on the basis of the phenomenological theory of microplasticity and converted into typical mechanical responses such as the microplastic strain expressed as a function of stress. The microplastic flow stress increases with decreasing grain size in a similar way to macroplastic deformation. However, the variation of microplastic flow stress with grain size is much greater than that of macroplastic flow stress. The flow stress at the plastic strain of 1×10−9 cannot be expressed by the Hall-Petch relation, a simple linear function of the inverse square root of grain size, and is almost constant when grain size is larger than 80 μm. This means that the constraining force of an individual grain by surrounding ones markedly decreases in coarse-grained specimens under the influence of surfaces. As the plastic strain increases, however, the microplastic flow stress appeares to approach the Hall-Petch relation.

著者関連情報
© 社団法人 日本金属学会
前の記事 次の記事
feedback
Top