資料

食のエネルギー利用の日米比較

久守藤男
（今治明徳短期大学）

Comparative Study Japan with U.S. of Energy Use in the Food System

Fugio Kumori

Imabari Meitoku Junior College, ko 688 Yada, Imabari-chi, Ehime, 794-0073
☎794-0073 愛媛県今治市矢田甲688

はじめに

今日の近代化した食生活は、膨大な化石燃料エネルギーに支えられていることは、常識となっている。しかしながら、その量的把握は必ずしも明確ではない。その大きな原因は、食システム全体の研究が遅れているからである。
アメリカでは、1974年に、農家食品加工業が家庭というフードシステム分析が科学誌『Science』に発表されている。日本では、1973年の石油ショックが契機になり、日本農業のエネルギー分析が行われたが、今日まで、食システム全体のエネルギー分析は行われていない。本稿は、エネルギー一コスト（栄養当たり燃料エネルギー）と栄養の視点から、日米比較を試みたものである。

１．日本のエネルギー利用の推移
(1) 食システムのとらえ方とエネルギー利用の推移
アメリカの「フードシステムにおけるエネルギー利用」においては、農家、食品加工業、商業、家庭に区分されているが、家庭で見た後、屋内の実態を考慮したエネルギー推移を加えて、次のように区分する。
A：農業食品産業（狭い意味での食料）の育成過程（国内産と輸入超過）。
B：食品の加工・流通過程（加工業、卸売・小売業、飲食店）。
C：家庭（食料品の保存、炊事、使用）。
D：廃棄物（廃棄、焼却処理）。
なお、食品加工業（製造業ともいわれる）には茶、コーヒー、酒類、清涼飲料も含む。

エネルギーの推計の方法は、総務庁編集責任『産業連関表』を利用して、エネルギー資源別の生産額当たりエネルギーを求めて、各産業の生産額当たりエネルギー（直接エネルギー）を求める。そして食料品産業の間接産業である肥料、農薬、機械設備の生産、金融、商業等に要するエネルギー（食料品生産業の間接エネルギー）を累積計算する産業連関式である。ここで累積とは、肥料製造業でいえば、肥料の原料のアンモニア製造業、それからアンモニアの原料である石油精製業にもエネルギーを必要とするので、それらを加算する必要があることである。家庭は別途の方法による。詳しくは著者を参照されたい。
なお、輸入食料品については、アメリカの資料を参考として単位当たりエネルギーをきめて計算した。とりわけ60年からのエネルギー利用の推移
産業連関表等より1960年以降について5年毎に計算したエネルギー利用の内、1960年、70年、80年、90年、95年を示すと表1のとおりである。
内容の説明は省くが、食システムを構成する産業および家庭の直接エネルギーと間接エネルギーとを合計した全体のエネルギーは、60年149兆kcal（内直接エネルギー79兆）、65年281兆kcal、70年453兆kcal、80年640兆kcal、85年701兆kcal、5倍増したが、90年は706兆kcal（内直接383兆）と横ばい状態にある。なお、95年にはまだ『産業連関表』が公表されていないが、筆者の予想では、米が減少し、代わりにエネルギーコストの高い食品、肉類が増加しているので、エネルギーコスト
日本食生活学会誌

表1 食システムのエネルギー利用の推移（単位：兆kcal）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>食用耕種</td>
<td>21 (4)</td>
<td>68 (25)</td>
<td>74 (22)</td>
<td>51 (21)</td>
</tr>
<tr>
<td>米</td>
<td>11 (2)</td>
<td>34 (13)</td>
<td>28 (7)</td>
<td>19 (6)</td>
</tr>
<tr>
<td>野菜</td>
<td>3 (0.4)</td>
<td>16 (5)</td>
<td>23 (10)</td>
<td>18 (9)</td>
</tr>
<tr>
<td>畜産</td>
<td>5 (0.5)</td>
<td>14 (2)</td>
<td>22 (4)</td>
<td>16 (4)</td>
</tr>
<tr>
<td>特用林業</td>
<td>0.0 (0.0)</td>
<td>1 (0)</td>
<td>2 (1)</td>
<td>5 (4)</td>
</tr>
<tr>
<td>漁業</td>
<td>29 (27)</td>
<td>64 (44)</td>
<td>83 (64)</td>
<td>70 (57)</td>
</tr>
<tr>
<td>農業薬</td>
<td>55 (32)</td>
<td>147 (71)</td>
<td>180 (91)</td>
<td>141 (86)</td>
</tr>
<tr>
<td>銀・豆・糖</td>
<td>11 (6)</td>
<td>41 (21)</td>
<td>60 (32)</td>
<td>82 (46)</td>
</tr>
<tr>
<td>畜産物</td>
<td>0.2 (0.1)</td>
<td>2 (0)</td>
<td>6 (1)</td>
<td>11 (2)</td>
</tr>
<tr>
<td>国産・輸入</td>
<td>67 (37)</td>
<td>188 (92)</td>
<td>240 (122)</td>
<td>224 (131)</td>
</tr>
</tbody>
</table>

食加工業 | 42 (18) | 121 (53) | 145 (56) | 167 (72) |
食畜加工	4 (2)	13 (7)	16 (6)	17 (8)
食塩	3 (2)	10 (5)	9 (4)	13 (6)
食水加工	3 (2)	11 (5)	11 (5)	17 (7)
食畜加工	26 (9)	65 (28)	78 (31)	77 (35)
精穀	2 (0.3)	5 (1)	5 (1)	6 (2)
仏魚子	8 (5)	11 (5)	15 (6)	19 (8)
酒類	8 (5)	23 (6)	22 (5)	19 (7)
他加工	9 (4)	32 (13)	40 (14)	57 (23)
调味料	3 (1)	16 (6)	15 (4)	12 (4)
食品・輸入	0.4 (0.1)	8 (3)	10 (3)	19 (5)
食物・加工業	1 (9.5)	43 (22)	53 (26)	59 (31)
小売	5 (2)	28 (13)	40 (21)	43 (25)
食品加工	4 (2)	31 (11)	78 (41)	91 (49)
加工等	55 (25)	194 (85)	276 (123)	317 (152)

家庭 | 28 (17) | 67 (37) | 110 (63) | 139 (81) |
| 廃棄物处理 | 0.1 (0.01) | 3 (2) | 14 (7) | 26 (19) |
| 廃棄物处理 | 0 (0) | 1 (0) | 11 (5) | 23 (16) |

合計 | A | 149 (79) | 453 (217) | 640 (313) | 706 (383) |

注）産業供給熱量B | 80.1 | 99.6 | 116.7 | 128.6 |

エネルギーコストA/B | 1.86 | 4.54 | 5.48 | 5.49 |

注）産業供給熱量B | 80.1 | 99.6 | 116.7 | 128.6 |

エネルギーコストA/B | 1.86 | 4.54 | 5.48 | 5.49 |

エネルギーコストの推移

食システムのエネルギー利用は、1人口、2人当たり栄養熱量、3栄養熱量当たり燃料エネルギー（エネルギーコスト）の積としてとらえることができる。この30年間に、人口29,341万人から12,361万人に1.32倍、1人当たり栄養熱量（1日当たり）は2,349 kcalから2,850 kcalに1.21倍に増加した。合わせると1.5倍である。ところで、食システムの燃料エネルギーは、4.7倍に増加したものであるから、エネルギーコストの増加率は3.1倍となる。つまり、燃料エネルギーの増加の6割は、エネルギーコストによることになる。

日本全体の栄養熱量の推計は、農林水産省が公表している『食事栄養表』、つまり総食料ベースの供給栄養熱量に飲料類を加算したものである。

エネルギーコストの上昇

60年のエネルギーコストは、燃料エネルギー149兆kcalを栄養80兆kcalで除すると、1.9（直接分は1.0）になる。これは栄養熱量1万兆kcalに燃料約1.9万kcal（石油1.9）。要したことになる。同様に計算すると、表2のように、65年3.1、70年4.5、80年5.5と増加し、以降はほぼ横ばい状態にある（85年5.7、90年5.5、内燃4.3）。なお、95年の予想は5.6程度と思われる。

表2 日本の食エネルギーコストの推移

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>国内農業</td>
<td>0.32</td>
<td>0.72</td>
<td>0.83</td>
<td>0.76</td>
<td>0.56</td>
</tr>
<tr>
<td>国内農業</td>
<td>0.36</td>
<td>0.37</td>
<td>0.64</td>
<td>0.71</td>
<td>0.53</td>
</tr>
<tr>
<td>地下</td>
<td>0.69</td>
<td>1.10</td>
<td>1.47</td>
<td>1.55</td>
<td>1.29</td>
</tr>
<tr>
<td>地下</td>
<td>1.00</td>
<td>0.33</td>
<td>0.41</td>
<td>0.53</td>
<td>0.64</td>
</tr>
<tr>
<td>小計</td>
<td>0.83</td>
<td>1.43</td>
<td>1.89</td>
<td>2.06</td>
<td>1.82</td>
</tr>
<tr>
<td>食品加工</td>
<td>0.52</td>
<td>0.92</td>
<td>1.22</td>
<td>1.24</td>
<td>1.18</td>
</tr>
<tr>
<td>食材</td>
<td>0.11</td>
<td>0.18</td>
<td>0.43</td>
<td>0.46</td>
<td>0.71</td>
</tr>
<tr>
<td>食品加工</td>
<td>0.05</td>
<td>0.10</td>
<td>0.31</td>
<td>0.67</td>
<td>0.86</td>
</tr>
<tr>
<td>貨物处理</td>
<td>0.00</td>
<td>0.01</td>
<td>0.12</td>
<td>0.14</td>
<td>0.20</td>
</tr>
<tr>
<td>貨物处理</td>
<td>1.52</td>
<td>2.64</td>
<td>3.84</td>
<td>4.53</td>
<td>4.58</td>
</tr>
<tr>
<td>家庭</td>
<td>0.35</td>
<td>0.43</td>
<td>0.68</td>
<td>0.94</td>
<td>0.98</td>
</tr>
<tr>
<td>貨物处理</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>貨物处理</td>
<td>1.86</td>
<td>3.08</td>
<td>4.54</td>
<td>5.48</td>
<td>5.71</td>
</tr>
<tr>
<td>全計</td>
<td>11.4</td>
<td>16.2</td>
<td>20.0</td>
<td>25.5</td>
<td>27.3</td>
</tr>
</tbody>
</table>

注）エネルギーコスト=燃料エネルギー×栄養熱量

エネルギーコストの向上は、発生エネルギーの増加によるものである。
よるもの（1.6から1.1に）、②栄養供給熱量の輸入依存率が、47%から53%に増加したのに、輸入食料のエネルギーコストの増加は僅かにとどまっていること（0.13）である。

なお、川上産業における過程別変化も注目される。60年から80年におかけては、エネルギーコストは、食品加工業は0.5から1.2に、卸売・小売業は0.1から0.5に、飲食店は0.05から0.67にと、いずれも増加したが、卸売・小売業と飲食店（外食産業）の増加著しく、相対的比率は食品加工業をはるかに上回った。

ここで、食物づくり（食品の保存、炊事）の過程という視点からみると、60年当時は外食（飲食店）は微々なるものであった。エネルギーコストは家庭（0.35）と飲食店（0.05）をあわせて0.40で、全体の22%であった。しかし、90年には、両者とも大幅に増加し（家庭1.08、飲食店0.71）、あわせて1.8で、全体の33%となり、飲料の生産（1.7）、加工（1.3）を上回っている。

なお、廃棄物処理過程は、まだ全体からみると微々たるもの（90年0.2、4%）であるが、増加傾向にある。

③ 米（ご飯）のエネルギーコストは低い

しかし、米（ご飯）は若干傾向を異にしている。60年当時、栄養供給熱量の48%を占めていた米のエネルギー利用を概算すると、29.2 kcal（うち直接18.0 kcal）で、全体の20%であった。エネルギーコストは稲作生産0.25、精米加工0.05、卸売・小売業0.02、飲食店0.00、家庭0.40、廃棄物処理0.00、計0.76。米以外の食品の平均は2.87であるので、米は他の食品の4分の1に過ぎず、省エネに大きく寄与していた。

ところで、その後の米のエネルギーコストは、85年に2.2（60年の2.5倍）となり、90年は若干低下し1.9である。90年における米以外の平均値は6.6であるので、米は3分の1以下となる。なお、90年の各過程別の内訳をみると、稲作生産0.63、精米0.20、卸・小売0.08、飲食店0.22、家庭0.60、廃棄物処理0.20である。家庭以外は大幅にアップしている。

④ 90年における主要食料品のエネルギーコスト

日本の食生活は、1963年から米が減少する時代を迎えた。それに引き替え、洋食系の食品、特に畜産食品が増えてきた。栄養バランスは改善され、欧米の「近代洋食」へ接近した。更に、85年以降になると、肉類、油脂類が急増し、米の熱量比率は190年には24%に低下した。それによって、脂質（F）の比率は「食料需給表」の供給熱量では、27%から29%に（1996年29.7%）、また、「国民栄養調査成績」の摂取熱量でも、脂質比率は24%台か

エネルギー

栄養熱量

エネルギーコスト

<table>
<thead>
<tr>
<th>食品名</th>
<th>業種</th>
<th>1990年</th>
<th>1996年</th>
</tr>
</thead>
<tbody>
<tr>
<td>米 (ご飯)</td>
<td>50.4</td>
<td>30.8</td>
<td>1.9</td>
</tr>
<tr>
<td>桂や</td>
<td>22.8</td>
<td>4.9</td>
<td>4.7</td>
</tr>
<tr>
<td>パン類</td>
<td>18.1</td>
<td>5.3</td>
<td>3.4</td>
</tr>
<tr>
<td>菜類</td>
<td>31.2</td>
<td>7.3</td>
<td>4.4</td>
</tr>
<tr>
<td>野菜</td>
<td>58.0</td>
<td>3.3</td>
<td>18.0</td>
</tr>
<tr>
<td>果実</td>
<td>21.2</td>
<td>2.6</td>
<td>8.3</td>
</tr>
<tr>
<td>肉類</td>
<td>70.8</td>
<td>7.8</td>
<td>9.1</td>
</tr>
<tr>
<td>魚類</td>
<td>17.6</td>
<td>3.3</td>
<td>5.3</td>
</tr>
<tr>
<td>牛乳等</td>
<td>52.0</td>
<td>6.5</td>
<td>8.0</td>
</tr>
<tr>
<td>魚介類</td>
<td>128.7</td>
<td>6.1</td>
<td>21.1</td>
</tr>
<tr>
<td>調理食品</td>
<td>18.4</td>
<td>3.2</td>
<td>5.9</td>
</tr>
<tr>
<td>砂糖</td>
<td>23.0</td>
<td>10.0</td>
<td>2.3</td>
</tr>
<tr>
<td>植物油脂</td>
<td>23.2</td>
<td>13.7</td>
<td>1.7</td>
</tr>
<tr>
<td>調味料</td>
<td>35.4</td>
<td>5.0</td>
<td>7.1</td>
</tr>
<tr>
<td>酒類</td>
<td>39.4</td>
<td>6.3</td>
<td>6.2</td>
</tr>
<tr>
<td>茶、コーヒー</td>
<td>9.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>清涼飲料</td>
<td>32.2</td>
<td>3.5</td>
<td>9.3</td>
</tr>
</tbody>
</table>

注）畜産食品には飼料作物成分を含む。清涼飲料には果実飲料を含む。

次に、90年について、食システムを構成する主要食料品のエネルギーコストを概算し、低栄養から順に、植物油脂1.7、米食1.9、砂糖2.3、パン類3.4、葉類4.4、めん類4.7、穀類5.3、調理食品5.9、酒類6.2、調味料7.1、牛乳等8.0、果実8.3、肉類9.1（うち牛肉9.5、豚肉8.0、鶏肉10.9）、野菜18、魚介類21となる（表3）。この分類は「産業連関表」の産業分類によるものである。

これらの中で、輸入の影響の少ないのは、米、野菜、果実、魚介類である。米食（ご飯）の低コストに対して魚の高コストが対照的である。

なお、畜産食品は、低エネルギーコストの輸入飼料ばかりでなく、食品自体を大量に輸入しているので、国内生産よりも大幅にコストになっている。たとえば、牛肉について国産もの（飼料は輸入だが）を試算すると、12.4となる。

⑤ 米食が食システムの低コスト性を支えている

米食の栄養熱量に占める比率は、60年の48%から90年には24%に低下しているとはいいえ、最大の比率を占める主食には違いはない。これの全体のエネルギーコストを引き下げ効果は大きい。米食に要したエネルギー全体は59兆kcalであるが、代替してきた畜産食品、並びに（7程度）であれば、200兆kcalを超える。したがって、節約
2. アメリカのエネルギー利用の推移

アメリカは、世界の最大の食料輸出国であるとともに、日本への最大の食料輸出国でもある。

(1) 欧米諸国の農業、食生活的変化の歴史

西洋では、中世は麦物、穀類に若干の畜産物を加味した三農式農業時代（8世紀から18世紀）で、栄養構成からみると「栄養不全型パン食」（貧食）時代であったと考えられる。その後、肉類を本格的に食べる「栄養バランス（飽食）」時代になったのは、畜産を組込んだ近代輪転式農業が展開（イギリスにおいては1730年以降）、冷蔵、冷凍技術が発達した19世紀になってからである。農業の近代化に対応して、「近代洋食」時代と呼ぶことにする。

1870年の英仏独の肉1日当たり消費量は140 g（年50 kg）に達していた。脂質熱量（F）比率が30%前後になった時期でもある。この状態は1930年頃まで続けた。アメリカも、1900年頃に30%になったが、イタリアは当時20%前後で、30%になったのは1970年である（百年越え）。

ところで、欧米諸国において、その後、畜産食品、油脂類、特に肉類の消費量が増加し、F比率も増加した（鈴田氏「栄養過剩」時代と言われている）。

F比率が40%に達した時期を農林水産省「食料需給表」付属統計（FAO）でみると、イギリス1933〜45年、フランス1969〜70年、西ドイツ1960〜62年、アメリカ1955〜56年である。アメリカの1954〜56年平均の1日当たり栄養供給量は、熱量1,700 kcal、内訳は肉類574 kcal（252 g＝年当り92 kg）、卵類44 kcal（62 g）、牛乳および乳製品431 kcal（678 g）、畜産物小計1,089 kcal（34%）、油脂類502 kcal（56 g）、魚介類20 kcal（13 g）、以上計1,611 kcal（51%）、脂質供給量は146 gである。その後のF比率の動きを統計でみると、70年44%（脂質156 g）、80年46%をピークに、88年45%（176 g）と若干低下している。イギリス43%、フランス46%、旧西ドイツ48%、イタリア45%などと先進資本主義国といわれる欧米諸国はほぼ45%前後である。

(2) 食生活の変化とエネルギーコストの推移

前掲「フードシステムにおけるエネルギー利用」から、栄養供給エネルギー値をみると、1910年1.5以下、20年1.0〜2.1、30年2.3〜2.9、40年4.6、50年6.4、54年6.6、60年7.0、64年7.7、68年8.6、70年8.8と推移している（表4：30年代までは推計値で幅がある）。

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>人口</td>
<td>百万人</td>
<td>163</td>
<td>152</td>
<td>163</td>
<td>181</td>
<td>192</td>
</tr>
<tr>
<td>内訳</td>
<td>百kcal</td>
<td>31</td>
<td>32</td>
<td>31</td>
<td>31</td>
<td>33</td>
</tr>
<tr>
<td>全栄養供給熱量</td>
<td>百kcal</td>
<td>150</td>
<td>168</td>
<td>178</td>
<td>189</td>
<td>206</td>
</tr>
<tr>
<td>全他エネルギー</td>
<td>百kcal</td>
<td>686</td>
<td>1029</td>
<td>1134</td>
<td>1251</td>
<td>1440</td>
</tr>
</tbody>
</table>

(注)）F比率＝脂質熱量＋栄養熱量×100

70年以降におけるエネルギー利用は、食塩抑制、劇烈な消費抑制、食品の過剰摂取に対する警鐘、F比率の低下運動（30%以下）による成果であろうと思われる。

次に、産業におけるエネルギー効率は、73年以降の石油ショックに対応して省エネが進められ、アメリカにおいても高まったことは、国民総生産当りエネルギーが70年代以降、低下していることにみられる。また、国民一人当たり一次エネルギー消費量もほぼ横ばい推移している。したがって、食システムのエネルギー利用の割合を15%とすると、食システムのエネルギーコストは、90年9%となり、70年とほぼ同じとなる。

(3) エネルギーコストの大幅アップの要因

20世紀に入っての食のエネルギーコストの大幅アップの要因を考えると、畜産食品、特に肉類の増加だけでは説明できない。

イギリスでは、1840年頃からHigh Farming（高度農業）時代といわれ、エネルギー革命を背景とする通信運
輸技術の発達、工業の発達、そして農業における化学化、
動力機械化、農場の大規模化、つまり化石エネルギー消費
時代に入った。アメリカでは、このイギリスの技術革
新がも早め導入し、低コストの農産物が大量に大西洋
を越えて西欧諸国に出荷できるようになった。アメリカ人
の所得は急速に向上した。特に、第一次世界大戦によっ
て、アメリカは農業、工業ともに世界第1の国に成長し、
豊かな国になったのである。残念ながらエネルギークリ
トの構造は1930年代まで不明である。

更に、アメリカは第二次大戦終了（1939～45）後、飛
躍的に経済発展をし、食システムの新たな革新が展開し
てきた。それらは、加工食品の増大、そしてフーズフー
ド、レストランなどの飲食店の発展による外食の増大に
みられる9)。

エネルギーコストの構成をみると、1940年と50年とで
は画然とした差異がみられる。農業コストの倍増（0.8
から1.7へ）である。これは、集約化である。地下川の
揚水灌溉による畑地灌溉農業の拡大（2千万ha）、除草
剤利用、動力コンバインの発達、家畜の放牧から飼育へ
など。

その意味で、F比率が30%を超えた1900年頃以降では、
単に栄養過剰だけではなく、食システムの構造的変化も
同時に進行してきた時期であるので、単に「栄養過剰」
時代ではなく、「近代洋食」時代と区別して「現代洋食」
時代と呼ぶことにする。

3. 食のエネルギーコストの日米比較

食生活的日米比較には、アメリカの資料が限られている
という難点があるが、前述の検討を踏まえて比較を試
みる。

⑴ 脂肪熱量（F）比率による日米比較

西欧諸国の中世における食（栄養不足型パン食）の
F比率は、おそらく10％以下で、たんぱく質熱量P比率も
10％でそこまでであったと思われる。

そして、18世紀後半頃から農業革命を基盤に「近代洋
食」時代に入り、たんぱく質、脂質不飽和が解消され、F
比率も20％代になった。日本のF比率が20％台になった
のは1970年代である。そこには百年以上の聞きがある。

そして20世紀に入ると、欧米先進資本主義諸国のF比
率は30%を超え、栄養過剰の「現代洋食」時代になった。
アメリカでは50年代に40％台になった。西欧諸国は第2
次大戦のためか、40年代は栄養不足と落ち込むことになっ
たが、戦後、食料増産に努力を傾注し、間もなく30％
台を回復した。60年代には40％台に、70年代になると成
人病が大きな社会問題となり、F比率の低下が目標に
かかげられた。

これに対して、日本は60年代にF比率が適度といわれ
る25%を超えた。今や30%に近づくとしている。20歳代で
は30%を超えている10)。したがって、欧米との聞きが急
速に縮まり、「現代洋食」の人口にさしかかっているこ
とになる。

(2) エネルギーコストの比較

日本のコストが低いか、高いのか

次に、エネルギーコストの面から比較すると、かなり
様相が違うように見える（図1）。

まず年次比較として、1960年では日本は1.9に7.0、70
年では4.5対8.8、90年では5.5対9.2という、日本が低
いのであるが、その差は縮まる傾向にある。

他方、栄養基準、特にF比率で比較すると、日本が高
いことになる。欧米諸国が「現代洋食」時代に入った
1990年頃のF比率は30％で、エネルギーコストは1前後
と思われる。それに対して、日本はF比率が20％になっ
た70年代にまでに4を超えており、F比率が30％近くに
になった90年代に5.5にある（低コストの輸入食料品の代
替効果で、5.5に留まっているのであるが）。

2) 同一F比率で日本が高いのはなぜか

上記から、同一F比率（たとえば30％）の場合のエネルギ
ギーコストを比較すると、アメリカの1前後に対して
日本は5月となる。このような聞きについて、少なくとも
次の2点が指摘できる。

第一に、アメリカが20世紀に入っての二度の世界大戦
日本食生活学会誌

を経験する中で展開してきた農業、食品加工業、流通業を含む産業の技術革新、エネルギー多消費による労働生産性の飛躍の上昇、家庭生活の利便性追求、外食の普及などによって、エネルギーコストが大幅にアップ（1から9に）したのであるが、日本においては、1960年以降における高度経済成長、国民の飛躍的な所得向上を背景に、短い期間に圧縮した形で近代化、現代化を導入してきた。低コストの米などを高コストの畜産食品への代替によるコストアップもさることながら、石化エネルギー多消費型技術の導入によるコストアップも進んだ。たとえば、米は0.8から2前後に2倍以上アップしている。野菜は1.6位から18に4倍増している。

第二は、和食の構成における特異性が指摘できる。和食は主食の米（ご飯）、麦と副食の魚、野菜、嗜好品の果物類、飲み物の茶、酒で構成されてきた。その中で、米（ご飯）の低コスト性はすでに指摘したが、魚と野菜のコストが非常に高いことである。

魚（鮮魚、貝類、養殖、加工食品も含む）のエネルギーコストを年次別の換算値とすると、1960年12、70年22、80年19、90年21である。畜産食品の中で最も高い牛肉であるが、60年では、栄養供給熱量の比率は4％に過ぎないが、エネルギーでは40kcal、27％を占めている。90年においても、栄養供給熱量の比率は5％に過ぎないが、エネルギーでは128kcal、18％を占めている。このようにエネルギーコストが高いのは、漁獲過程だけで14（65％）を要すること（航行燃料と冷凍にエネルギーを要するからである）、飼料に大量の飼料が使用されること、卸・小売過程を冷蔵や冷凍の形で運送しなければならないうえのエネルギー消費が指摘できる。

次に野菜のエネルギーコストは、60年4.6、70年14、80年20、90年18と推移している。エネルギーの全体に占める比率は60年9％、90年8％を占めている。多収、省効化、不時栽培を追求する過程で、エネルギー多消費型になった。90年の統計では、露地栽培と施設栽培に区分されたので、そのコストを計算すると、露地野菜16、施設野菜18となる。飲食店、家庭においても、鮮度保持のために冷蔵される場合が多く、大量の電気エネルギーを要していることもある。

3）米飯（ご飯）とパン食の比較

最後に、和食を代表する国産の米食（ご飯）と洋食の代表であるパン食（原料の小麦は輸入）について比較検討する（1990年）。

表3で示したように、米食（ご飯）のエネルギーコストは1.9に対してパン食（食パン、学校給食パン、菓子パンを含む）は3.4である。パン食がかなりコスト高（1.8倍）である。

米食とパン食の各過程のエネルギーコストを対比すると、農業生産過程は0.63対0.81、加工過程は0.20（製麴のみ）対1.33（製粉0.20、製パン1.13）、流通過程は0.08対0.48、以上計0.91対0.62、飲食店0.22対0.13、家庭過程は0.60対0.45、廃物処理0.20対0.20である。したがって、米食とパン食の差はほとんど農業、加工、流通に要したエネルギーの差である。

ここで経済面から一言ふれると、原料面での栄養千kcal当たり値は玄米83円（kg 292円÷3.51）に対し輸入小麦は8.0円（kg 27円÷3.35）であるが、小売段階では米精米265円（449円÷3.56）に対して食パン279円（738円÷2.65）である。原料段階では小麦が10分の1という安さであるが、小売段階では逆に2倍余りになっている（『産業連関表』）。その要因としてエネルギーコスト高を指摘できる。もっとも、精米は炊飯しなければ食べられないが、食パンはそのままでも食べられる。参考に経済産業省調査で対象になっている「もち」をとりあげると、368円（864円÷2.35）。なお、私見であるが、外食の米飯で茶わん一杯（120g）80円とすると、450円（667円÷1.48）となり、調理パンの場合、半切り（60g）70円ならば米飯と同じになる（1170円÷2.6＝450円）。実態はもっと高い。食パン段階で米食は食パンより栄養熱量当たり価格は安いと言えよう。

以上のように、米食は最も省エネの主食品である。しかし、冷蔵庫にお世話になることも少ないの、地球温暖化やオゾン層破壊などの環境負荷も少ない。この点からも、今後の食生活を考える場合、米食を再認識することが必要であると考える。

文献

2）日本エネルギー経済研究所エネルギー計量分析センター：EDMC／エネルギー・経済統計要覧（各年版）、省エネルギーセンター
3）藤本登、福田裕一、鈴木健、福田研二：家庭における用途別エネルギー消費量のエネルギー最適化に関する研究、エネルギー・資源学会第17回研究発表会講演論文集、p. 241－246 (1998)
4）久守藤男：環境保全と資源利用システム、京都大学学術出版会（1994）
6）主要食料品のエネルギーコストについて、最近下記に
発表したが，とらえ方が少し異なることを付け加る。久守藤男：主要食物品のエネルギーコスト——LCA視点から
——。食の科学，光琳，p. 6～12（1998）
7）小林茂：イギリスの農業と農政。成文堂（1973）
8）蜜田豊之：肉食文化と米食文化―過剰栄養の時代―。
中公文庫（1988）
9）L.P.シェルツ/ L.M.ダフト（小西孝蔵・中西康博監訳）：
アメリカのフードシステム，食品産業・農業の静かな革命。
日本経済評論社（1996）
10）厚生省：平成7年国民栄養調査成績（1997）