結晶成長と重力加速度依存現象の科学

日本マイクログラビティ応用学会会長 田比谷孟俊

結晶成長は微小重力状態で行う試みが、米国では1970年代のスカイラークの時代からなされてきた。有人打ち上げ技術を有するロケットも同様であった。MITのWittらによるTeドープInSb結晶成長実験では、地上で作製によって成さず、成長銅が顕著なInSb単結晶を微小重力下で融解再結晶化させると、成長銅が減少し、地上における浮力に起因する変動的な対流が、微小重力環境下では消失することが実証された。以来、各国とも宇宙環境に注目して様々な結晶成長に関連する研究がなされた。すなわち、結晶成長の様過程に注目し、これに及ぼす重加速度の効果を明解し、その成長を地上の結晶成長の科学と産業技術に役立てようとするものである。「Finding in space, Production on earth」である。

宇宙環境の本格化と同時代的に進行した数値シュミュレーション技術の発展は、相補的な効果をもたらした。すなわち、結晶成長における環境相の熱物質輸送の理解の進歩である。1986年以降イギリスで開催されたICGCS-8では、「Heat and Mass Transport in Earth and Microgravity」と題したセッションが企画された。これには低電流密度流体における地上と微小重力下での熱物質輸送の違いを、重力加速度をバラメータに比較検討しようというメッセージ性が込められていた。微小重力下での結晶成長実験の結果、地上での結晶成長を記述するための新しいシュミュレーション技術、および、遠心加速機を用いた過重力状態での結晶成長の議論が一つのセッションで行われ、いかなる重力加速度においても、重力加速度と結晶成長との因果関係は、ナビエ・ストークスのもとで表現でき、宇宙環境は地に営伝されるような技術ではないということを示唆していた。実用が開始されつつあった磁場増減法との対比で微小重力環境の利用が議論され、融液数値の非線形性が増幅される実用の大型半導体結晶の育成に、熱物質輸送の理解と制御がキーであるとの認識があった。同時に、微小重力環境で顕著化するマラソンリア対流に関しては、シリコン結晶成長に及ぼす効果が発表され、その影響が認識された。その後の微小重力下でのシリコン融液のマラソンリア対流のエックス線による可視化観察は、日本発の成果であり、溶液濃度を変压によって流れと流れのモードが変化することが示された。

宇宙飛行士が搭乗したスペースシャトルミッション「ふわっと92」では、地上よりも大気浮遊が可能であったことを実証した。フローティングゾーン法による大型InSb単結晶育成に、物質輸送が密接支払となることを狙ったPbS-SnTeやGaAs-InAs単結晶の育成実験は、注目に値する成果である。マクロスケール生成の問題も微小重力実験の成果をもとに、そのメカニズムは今後の共同研究として明解された。

シュミュレーションによって結晶成長を表現する際、重要な要素の一つが環境相の熱物性定数である。溶融半導体の特性があらかじめ高密度では、その密度、体膨張、比熱、拡散係数、表面張力、粘性率、熱伝導率、電気伝導度など、いずれの熱物性値も測定が困難である。浮力による対流が抑制される微小重力環境を利用することにより、輸送現象を支配する拡散係数および熱伝導率が、従来と比べて段階に正確に測定できることが明らかとなった。さらに、宇宙環境を利用するための浮遊技術の進歩は、地上においても高温融体の無容器浮動を可能とした。これを利用することにより、様々な熱物性定数の測定が過冷却を含む広い温度範囲で実施され、議論の対象となった実験点においての物性値異常の存在に関する問題も答えることができた。

結晶成長における核生成の問題や、凝固急冷の急冷に出かげる研究にも、微小重力環境の利用は有効である。対流が抑制される場での溶体核生成の精密に測定された。モデル物質としての重水の微小重力下での結晶成長では、結晶化熱が過冷却された液体側に放出される状態が、位相シフト干渉法により動態として観察された。これのように観察は、日本結晶成長学会会員の寄与が大きい。

前章と関連する半導体結晶の場合も、半導体結晶がそうであったように、微小重力環境に過大期待が寄せられているように見える。しかし、半導体の結晶に関しては、極めて異方性の大きな表面エネルギー、結晶化熱、軸位のエネルギーに関連する特性のような基本的物性値すら明かでない。さらに結晶成長の基本原理のないまま、微小重力環境の利用の者が先掛ける懸念がないわけではない。しかしながら、微小重力環境の利用はその機に、平衡状態図の作成、結晶品の生成あるいは溶波組成のスピンダル分解、表面拡散、ステップのバンチングなどの結晶成長の常過程が明らかにされてからある。

宇宙飛行の恩恵としての、「重力加速度依存現象の科学」を結晶成長にフィードバックすることにより、結晶成長学の分野が今後さらに発展をみせることを期待している。


（東京都立科学技術大学）