次に雌1頭からの次世代虫数は、接種56日後では55頭、105日後では61頭で最も多く、平均20～30頭であった。これらは、ほとんど雄成虫で雄成虫は1頭の場合が多く、総虫数の多いものでは雌成虫が2頭みられた。

1頭卵孔には、平均7～10頭の虫が生じ、その虫卵の発育状況は、接種28日後には、卵層のみであったものが、40日後に、卵と幼虫層に変わった。56日後には各層のものがみられた。この場合卵層が38%で最も多く、幼虫、蛹となるに従って減少するが、次世代成虫が5%程度もみられた。

以上のように、アクアビキクイミシを三角フラスコ内のハハソの卵殻培養基を用いて、飼育することができたが、さらに現在同フラスコ内で次世代の幼虫が生えたことを続けている。

<table>
<thead>
<tr>
<th>接種後</th>
<th>孔道</th>
<th>産卵</th>
<th>1頭卵孔</th>
<th>虫の発育態</th>
<th>1頭卵孔における虫の発育態</th>
</tr>
</thead>
<tbody>
<tr>
<td>日数</td>
<td>総長</td>
<td>孔数</td>
<td>の長さ</td>
<td>総虫数</td>
<td>卵数</td>
</tr>
<tr>
<td>28日</td>
<td>14 mm</td>
<td>2</td>
<td>3～4 mm</td>
<td>8～22</td>
<td>100</td>
</tr>
<tr>
<td>40</td>
<td>13～53</td>
<td>2～4</td>
<td>2～17</td>
<td>8～39</td>
<td>44.7</td>
</tr>
<tr>
<td>56</td>
<td>32～137</td>
<td>3～9</td>
<td>5～20</td>
<td>9～55</td>
<td>21.9</td>
</tr>
</tbody>
</table>

引用文献

野間 信（1965） 北方林業 17: 79～83。
沢田高村（1963） 植物防除 17: 346～350。

PCPのアサリに対する毒性1.2

長沢純夫・中山 男・清水春子
イハラ農薬研究所
(1966年2月11日受領)

軟体動物に対する有毒物質の研究は、主に住血吸虫あるいは肝ジストマ類の関係寄生である前線類と、農作物を破壊する有害類の触角類を対象にしている。本報においてはPCPのアサリに対する毒性を究明するにあたって、えらんだ試験法とその生死の判定基準をしるし、あわせて薬剤の濃度と浸漬時間の関係を算定した結果をのべる。

実験材料および方法

供試アサリ：この実験に用いたアサリ，Tapes(Amysgala) philippinarum (Adams et Reeve) は市販品で、その大きさは1.5～17.3gの範囲にあった。

供試薬剤：Pentachlorophenol（PCP）のナトリウム塩は純度90%の工業製品で、これを有効成分含有量にもとづいて所要の濃度に海水で稀釈して用いた。

実験方法：直径9cm、高さ5cmのガラス容器に所要濃度のPCP溶液200mlをとり、これに目方を割ったアサリを1個入れ、所定時間浸漬した。この場合薬液の接触を確実にするために小木片をはさみ、貝殻を少しけり開いた状態にしていた。浸漬後はこれを海水で3回洗い、24時間後にその後の生存を観察記録した。生存の判定はつぎのようにして行った。すなわち殻を開いていられるもので生きている個体は、入水管を反出に出し海水の吸入排出を行っているが、死滅した場合はこれが行わぬ。海水が白濁してくるのが特徴である。殻が開いているものは、金属片で貝殻をひらいた場合、閉殻のあるものを生存個体とし、そのまま開殻の状態にあるものはこれを、観察個体とみなした。なお観察殻の殻の開いた時は、体の腐敗物によって海水が白濁してくるのが普通である。この実験は1965年8月21日から11月2日にいたる期間に行なったもので、実験時の水温19～21℃であった。

実験結果と考察

実験の結果を示すと第1表のごとくである。これはえられた体重あたりの濃度と、生死の関係をしめしたもので、こうした形において記録された実験結果を、プロピオットを用いてまとめた方法についてはBliss（1938）によってのべられており

1 Toxicity of PCP for the Japanese little neck. By Sumio NAGASAWA, Isamu NAKAYAMA, and Haruko SHIMIZU (Ihara Agricultural Chemicals Institute, Shinizu, Shizuoka-Pref.);
2 1965年11月27日，日本応用動物昆虫学会東海支部，日本昆虫学会東海支部合同講演会（金谷）において講演発表；
日本応用動物昆虫学会誌（応物昆）第10巻 第2号：96～99 (1966)
第1表 PCPのアザリに対する毒性。アザリの体重あたりの薬液の濃度（ppm/g）と、浸漬時間（時）。

<table>
<thead>
<tr>
<th>浸漬時間</th>
<th>濃度の対数</th>
<th>生死</th>
<th>濃度の対数</th>
<th>生死</th>
<th>濃度の対数</th>
<th>生死</th>
<th>濃度の対数</th>
<th>生死</th>
<th>濃度の対数</th>
<th>生死</th>
<th>濃度の対数</th>
<th>生死</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-0.027</td>
<td>-0.551</td>
<td>-0.326</td>
<td>-0.049</td>
<td>+0.168</td>
<td>+0.409</td>
<td>+0.409</td>
<td>+0.168</td>
<td>+0.409</td>
<td>+0.409</td>
<td>+0.168</td>
<td>+0.409</td>
</tr>
<tr>
<td>20</td>
<td>-1.413</td>
<td>-1.229</td>
<td>-1.056</td>
<td>-0.903</td>
<td>-0.696</td>
<td>+0.537</td>
<td>+0.537</td>
<td>+0.696</td>
<td>-0.903</td>
<td>-1.056</td>
<td>-2.219</td>
<td>-1.056</td>
</tr>
<tr>
<td>40</td>
<td>-1.357</td>
<td>-1.123</td>
<td>-0.982</td>
<td>-0.806</td>
<td>-0.651</td>
<td>+0.346</td>
<td>+0.346</td>
<td>+0.651</td>
<td>-0.806</td>
<td>-0.982</td>
<td>-1.123</td>
<td>-0.982</td>
</tr>
</tbody>
</table>

長沢・柴（1964, 1965）も強度共その適用例を報告した。そこでここでは計算の詳細を省略することを省略し、実験結果の最初から5あるいは10個体ずつ群集して、第2回目までの補正計算をおこなった結果をしめすにとどめる。第2表の数値がそれである。第2表の試験の結果がしめすように、実験値と計算値とは抽出誤差の範囲内で一致しているとみなしてよさしけなぐ、上述の実験方法によって満足するにたる濃度致死率の関係はもとめられるものと考えられる。

ところで表記類の生死の判定は、これを熱帯に投じて開くものには生、開かないものは死にすれば容易にこれをなしろよ
第２表 第１表の実験結果にもとづいて第２回の補正計算まで行なった結果の要約

<table>
<thead>
<tr>
<th>段階の数</th>
<th>浸漬時間</th>
<th>10</th>
<th>20</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>類似の数</td>
<td>Σ(u)</td>
<td>36.63</td>
<td>50.08</td>
<td>36.74</td>
</tr>
<tr>
<td>類似の数</td>
<td>Σ(u^2)</td>
<td>24.49189</td>
<td>-2.87486</td>
<td>-33.46515</td>
</tr>
<tr>
<td>類似の数</td>
<td>Σ(x)</td>
<td>0.6685923</td>
<td>-0.1146276</td>
<td>-0.9106462</td>
</tr>
<tr>
<td>類似の数</td>
<td>Σ(xy)</td>
<td>188.42124</td>
<td>123.57188</td>
<td>182.64261</td>
</tr>
<tr>
<td>類似の数</td>
<td>Σ(xy^2)</td>
<td>5.1436242</td>
<td>4.9271085</td>
<td>4.9712197</td>
</tr>
<tr>
<td>類似の数</td>
<td>[xy^2]</td>
<td>1.101126</td>
<td>3.382235</td>
<td>1.755663</td>
</tr>
<tr>
<td>類似の数</td>
<td>[xy]</td>
<td>8.304392</td>
<td>6.985256</td>
<td>7.949315</td>
</tr>
<tr>
<td>類似の数</td>
<td>b</td>
<td>5.29497</td>
<td>2.06528</td>
<td>4.52781</td>
</tr>
<tr>
<td>類似の数</td>
<td>c</td>
<td>39.14930</td>
<td>18.61435</td>
<td>41.93722</td>
</tr>
<tr>
<td>類似の数</td>
<td>a</td>
<td>8.2774</td>
<td>4.1879</td>
<td>5.9443</td>
</tr>
<tr>
<td>類似の数</td>
<td>n</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

第1図 P.C.Pの海水溶液にアサリを20時間浸漬したときの濃度（ppm）と致死率の関係

この結果からP.C.P製剤のアサリに対する毒性は、上表の実験方法にしたがって20℃前後の海水による稀釀溶液に10〜40時間浸漬する事によって比較検討することが可能であるといえよう。なおこの場合、無処理区の海水においては、この時間内では致死する個体はみられなかった。実験室の条件下において、20℃の海水200ml中では80時間は生存するが、すでに時間を経た市販品、また水温の高い場合などでは、発胞個体がきわめて早くからあらわれ、満足な自然調査が得られないので普通である。
なお浸漬液の濃度を、アサリの体重あたりの ppm でしめし、これに対応する生死の別を記録し類似する方法をとった。すでに数値からでてきているが、こうした体重あたりの濃度を考察の基準数値としろのは、厳密には Bliss (1936, 1961) のいう体重換算の size factor h で、抽出誤差の範囲内に一にとらえる場合である。この範囲内でるときはおのずから別の実験と解析の方法によらなければならないことは勿論である。

引用文献

---

ゾウムシゴサゴネバチの学名について

立川 智三郎
愛媛大学農学部昆虫学研究室

昆虫の様式密度効果の実験材料の一つとして、久しくわが国で用いられているものに、アスキゴサムシの寄生蜂ゾウムシゴ
ネバチがある。本種は京都大学の竹内俊郎教授がアズキゴサ
ムシから羽化させた材料をもとして、1936年2月に井井啓、長
沢純夫の田博士によって Neocatolaccus に属する新種として
N. mamezophagus と命名されたもので、わが国の固有種と
みなされていた。最近、私は本種を調べてみたいと思い、内田
教授にそのを通たところ、アスキゴサムシから羽化した多
数のゴサムシゴネバチが1966年1月17日に私の手許に届け
られた。本種を検した結果、意外にもこれは真の Neocatolac-
cus ではなくて、それに近縁の Anisopteromalus に所属す
るものであり、A. calandrae(Howard)の記載に合致した。
念のために、私は本種の一部を U. S. National Museum の
B. D. Burks 博士に送り所蔵標本と比較してもらったところ、
やはり A. calandrae に間違いないことがわかった。ここに

1. On the identity of Neocatolaccus mamezophagus Ishii et NAGASAWE (Hymenoptera: Pteromalidae). By Tetsusaburo TACHIKAWA (Entomological Laboratory, College of Agriculture, Ehime University, Matsuyama) 日本応用動物昆虫学会誌（応応翅）第10巻 第2号：99 (1966)

---

Neocatolaccus mamezophagus を次ののように処理する。
Anisopteromalus calandrae (Howard)
= Neocatolaccus mamezophagus Ishii et NAGASAWE, syn. nov.
A. calandrae は世界各地に広く分布する極めて普通の種類
である。主として飛蛾害虫に寄生し、記載によればオサカム
シ科の株内アカゴサムシ Sitophilus granarius LINNÉ, コクゴサムシ S. oryzae LINNÉ, コクゴサムシ S. saakii TAKAHASHI, ソウムシ科の Callophillus latinasus SAY, マメゴサムシ科のアスキゴサムシ Callosobruchus chinensis LINNÉ, オノモノモノゴサムシ C. maculatus Fabricius, シパンツムシ科のタパンツムシ Lasioderma serricorne Fabricius, ジンサンシンパンムシ Stegobium paniceum LINNÉ, ケシキスイ科のコメケキスイ Carpophilus obsol-
etus ERICHSON, メイエゴコの Ephesia elutella HübNER に
寄生することが知られている。1982年に大岡部（台湾総督府
中央研究所農業部報告34号105頁）がコメケキスイの寄生蜂
として台湾から記録したコメケキスイヤドリゴコ Piaiaplas-
morpha vandinei Tucker も Anisopteromalus calandrae
である。さらに、標本を提供された内田俊郎教授、標本を
比較
で調った B. D. Burks 博士に厚く御礼を申し上げる。