The Buckling Strength of Initially Imperfect Shells under Various Stress Condition

by Takao Yoshikawa, Member
Michihiro Ishikawa, Student Member

Summary

It is well known that the buckling strength of spherical shell and cylindrical shell is reduced by initial shape imperfections and the reduction rate is much influenced by stress conditions. This reduction rate will vary in accordance with the imperfection shape even for the same maximum magnitude.

In this study, the geometrical non-linear FE analysis is performed in order to examine what kind of initial imperfection shape will most reduce the buckling strength of cylindrical shell, spherical shell, and ellipsoidal spherical shell under various stress conditions, such as one-directional compression, two-directional compressions, and combined one-directional compression and another directional tension.

In the case of both-ends simply-supported cylindrical shells under axial compression, the axi-symmetrical shape imperfection, which is axially of the buckling mode, reduces the buckling strength more than any other imperfection shape with the same maximum magnitude. In contrast to this, cylindrical shells under lateral pressure or under external pressure (combined lateral and axial end pressure), spherical shell under external pressure and in the partial filling condition that produces the meridian compressive and latitude tensional stress conditions just below the equator, and ellipsoidal spherical shell under the same loading condition as for spherical shell, the imperfection of asymmetrical buckling mode reduces the buckling strength more than any other imperfection shape. The buckling strength of cylindrical shell is much influenced by imperfection mode, while that of spherical and ellipsoidal spherical shells is less influenced.

In addition, the buckling strength of sandwich (laminated) shell structures with steel skin plate and foam core are examined. The sandwich shell structure is found to have a larger buckling strength and less imperfection sensibility than the homogeneous shell with the same weight.

1. 緒 言

円筒殻や球殻などの殻構造の座屈強度が形状初期不整によって大きく低下することは良く知られている。それらの座屈強度の低下割合は、応力状態（垂直荷重状態）によって異なり、Dn[1]をはじめ、ECCSやAPIなどのルールでは、円筒殻について、軸圧縮、一様圧力、横圧、振りの各荷重下での初期不整による座屈強度の低下割合が示されている。初期不整による座屈荷重の低下割合は初期不整量や初期不整モードによって異なるが、決められた方法で初期不整を計測し、基準値以下であることを工作基準の中で要求しているルールが多い。この工作基準は安全性側に規定されており、ルールに従って強度設計を行ない、さらに工作基準以下の初期不整量であることが確認できれば、強度面での問題がないが、安全側の評価を与えすぎている可能性がある。

本研究では、円筒殻、球殻、楕円球殻などの殻構造に及ぼす形状初期不整の影響について、種々の応力状態（2軸圧縮、1軸圧縮、1軸圧縮+1軸引張りなど）で、どのような形状の初期不整が座屈強度を最も低下させるかを弾性域において調べた。また、初期不整モードと座屈強度の関係を明らかにして、殻構造の座屈強度設計の資料を提供する。

2. 円筒殻の座屈強度に及ぼす初期不整の影響

2.1 軸圧縮荷重を受ける場合

軸圧縮を受ける円筒殻の古典座屈荷重は(1)式で与えられ、そのときの周方向の座屈波数\(n_0\)は(2)式で求まる。

\[
P_d = \frac{\pi^2 k_s E}{12(1 - \nu^2)} \left(\frac{t}{R} \right)^4 \times 2\pi R t \quad k_s = 4\sqrt{32}/\pi^2, Z \geq 2.85 \quad (1)
\]

\[
n_0 = \frac{1}{2} \sqrt{3(1 - \nu^2)(R/t)} \quad (2)
\]

ここに、\(E\)はヤング率、\(\nu\)はポアソン比、\(R\)と\(t\)はそれぞれ円筒殻の外径と板厚、\(Z(=\sqrt{31 - \nu^2}t/t)\)は円筒殻の長さの程度を表す無次元化パラメータ（Batzdorf parameter）である。
初期不整により座屈強度がどの程度低下するかについて
は、Koiter, Hutchinson, Almroth など多くの研究があり、
著者の一人も Z=50 の円筒に関する，軸対称初期不整
量と座屈強度の関係を明らかにしている 5)。また、
Hutchinson はその論文の中で，軸対称初期不整が座屈強度
を最も低下させると述べているが，その理由についての力学
的説明や計算結果は示されていない。また，著者の研究範囲
では周方向の初期不整モードと座屈荷重の関係を示した論
文は見当たらない。

そこで，周方向の初期不整モードの違いに座屈荷重がど
のように変化するかを調べるため，座屈前の幾何学的非線形
挙動を考慮できる FEM プログラムを用いて，座屈強度計算を
行った。解析対象とした円筒は，端部影響の観点からは
十分に長いと見なせる Z=50 の円筒で，半径/板厚比 (＝
R/t) が 100, 400, および 1000 の 3 種類である。

本研究では，軸対称初期不整のある場合の計算は，座屈
前の非線形挙動を追跡できる軸対称不整のプログラム AXIS-BUCK
の解析ソフトを用いた。非軸対称初期不整に対
しては汎用 FEM 解析ソフトの MSC.MARC (使用要素；4 節点厚
肉シェル要素 No. 75) を用いて計算した。なお，AXIS-BUCK
の解析精度については参考文献4)，7) で，実験結果と比較し
て十分な精度を有していることを確認している。また、
MSC.MARC を用いた計算では座屈波長あたり 12 要素程度に分
割しており，解析精度上十分なメッシュ分割であること
を，分割数をパラメーターとした計算で確認している。

解析モデルを Fig.1 および Fig.2 に示す。軸対称初期不
整のある計算では，軸方向に sine 3 波のモードを与えた。
このモードは，Z=50 の円筒の場合において，初期不整の
ない円筒の座屈モードの軸方向形状を一致させており，
軸対称初期不整のうち最も座屈荷重を低下させる形状であら
ることを，種々の初期不整モードを与えた計算により確認している。

また，非軸対称初期不整のある計算では，(3) 式に示す周方
向に n 波の初期不整を与えた。なお，今回の計算では最大初
期不整 5 % が板厚 t の 20% とした。

解析領域は変形の周期比を考慮して，周方向に 180°
/ n の領域とした。初期不整モードの一例を Fig.1 および
Fig.2 に示す。なお，採用した波数 n が(2) 式で得られた
n, に等しい場合の初期不整形状は，初期不整のない円筒
の座屈モードと一致する。

\[
w_0 = \delta \cos(n \pi \theta / \theta_0) \sin(3 \pi / L), \quad \delta / t = 0. \quad (3)
\]

座屈荷重の計算結果を Fig.3 に示す。図中の縦軸は座屈荷重
P_c を初期不整のないときの座屈荷重 P_{cl} で除して示してい
る。実線 A-A' および B-B' は R/t = 100, 400, 1000 の
3 ケースの場合にそれぞれ 8, 17, および 26 となるが，計算で
は軸対称初期不整の中央では波数 n の初期不整の場合に
P_c/P_{cl} の値が最も小さい座屈荷重となった。なお，今回の計
算では，軸対称の初期不整を与えた計算では，非対称モード
に分岐する荷重を，また，それ以外の初期不整を与えた計算
では，最大荷重（剛性がゼロになる荷重）を座屈荷重として
いる。

一般に座屈モードと同じ形状の初期不整を与えた場合には
最も座屈荷重が低下すると考えられるが，軸圧縮荷重下では
軸対称初期不整の場合にさらに低い座屈荷重が得られる、

Hutchinson の説明と一致する。これは，軸圧縮を受ける円
筒の座屈剛直前の応力状態を考えると説明できる。
すなわち，Fig. 4 に示すように，軸対称初期不整が存在すると，
軸方向
に圧縮応力状態であることに加え，荷重の傾斜の影響でスパ
ン中央では半径の小さい方向に変形が進み，周方向にも圧縮
の応力状態になる。一方，非軸対称初期不整の場合はこのよ
うな周方向の圧縮応力は生じにくく，2 軸圧縮応力状態とな
る軸対称初期不整の方が座屈荷重が低い値となったと考え
られる。

![Fig.1 Model for FE analysis(axi-symmetric imperfection)](axi-symmetric)

![Fig.2 Model for FE analysis (asymmetric imperfection)](asymmetric)

Fig.3 Buckling load of cylinder under axial compression
Fig. 4 Mecchanism of Bi-axial stress condition of cylinder
under axial compression

なお、軸方向の初期不整モードについては著者らが参考文献5)で調べているが、Z=10～50 程度の円筒殻の場合に、軸方向に3波の初期不整が最も座屈強度を低下させ、Z=10の比較的低い円筒殻では1波の初期不整が最も座屈強度を低下させる。偶数波の初期不整による座屈強度が奇数波より高くなる理由は、両端支持した形状拘束の影響が最も小さくなる筒中央での初期たわみが、偶数波の初期不整ではなくゼロとなり、座屈荷重が高くなるためと考えられる。

2.2 一種外圧を受ける場合

外圧を受ける両端支持の円筒殻の座屈圧力（以下、座屈荷重とする）は、(4)式において、周方向波数nを変化させ、座屈荷重P_aの値が最も低くなるときにnの値を求めることができ、なお、このときの周方向波数をn_oとする。

\[
P_a = \frac{E t}{R} \times \frac{\alpha^4}{\left(n^2 + \alpha^2 \right) \left(n^2 + \alpha^2 - 2 \right)} + \frac{\pi^4}{12(n^2 - \alpha^2)} \times \left(\frac{t^2}{R} \right) \times \frac{\left(n^2 + \alpha^2 - 2 \right)}{n^2 + \alpha^2 / 2 - 1}
\]

ここに、\(\alpha = \pi R / L \)である。

本報では、比較的長い見なせるZ=50の円筒殻を対象に、周方向の初期不整モードが座屈強度に与える影響について調べた。Fig.5にZ=50、R/t=100,400,1000の円筒殻についての計算結果を示す。計算では、最大初期不整量sを板厚 t の20%とし、初期不整モードを轴方向に1半波とし、周方向に波数を変化させた。図中のn_kは(4)式から求めた初期不整がないときの周方向座屈波数に相当し、R/t=100、400、1000のときn_k=10、20、および32となる。計算結果より、周方向初期不整の波数がn_kに等しいとき、最も座屈荷重が小さくなることがわかる。また、軸対称初期不整の場合の座屈荷重P_a/P_DLはR/tの値に関わらず一定値となり、周方向の初期不整波数がn_kである場合の方が低い座屈強度を示しており、軸圧縮の場合と異なる結果である。これにより、外圧の場合には、非対称初期不整の場合であっても軸圧縮の影響で大きな周方向応力が生じることになり、Fig.4に示した軸対称初期不整の場合に生じる軸力による2次的な周方向応力の影響は相対的に小さくなるためと考えられる。

Fig. 5 Buckling load of cylinder under external pressure

以上では、単独のモードの初期不整が座屈強度に及ぼす影響を調べたが、次に(5)式で示される複数のモードの初期不整が同時に存在する場合について検討する。計算対象とした円筒殻はR/t=100、Z=50であり、採用した初期不整モードは最も座屈荷重を低下させる単独の初期不整モードであるn=10のほか、n=5,20,および30とした。

\[
w_0 = \left(\delta_1 \cos(n \theta') + \delta_2 \cos(n' \theta') \sin(\pi x / L) \right)
\]

計算領域は、軸方向には全長さ、周方向には変形の対称性を考慮してθ=360°とし、初期不整の最大値はn=10の場合には、板厚の0.02,0.05,0.1および0.2倍と変化させ、組み合わせる他のモードの初期不整の最大値は板厚の0.2倍に固定して計算した。

計算で得られた座屈荷重をFig. 6に示す。縦軸は座屈荷重の値を、横軸は計算で与えた初期不整量を示す。図より、座屈モードの初期不整が小さい時には、他のモードによる座屈荷重の低下を考えることが必要であるが、座屈モードの初期不整が大きくなると、他のモードの初期不整の影響は小さくなり、座屈モードの初期不整が単独で存在するとき(Fig.5参照)と、座屈荷重はほぼ等しいとなっていることがわかる。

Fig.6 Buckling load of cylinder under external pressure
with multi mode imperfection

初期不整を有する殻構造の様々な応力状態における座屈強度
2.3 横圧を受ける場合

横圧を受ける両端支持の円筒殻の座屈荷重は以下の式で与えられる。

\[P_0 = \frac{2}{\pi^2} \frac{(R/L)^2 + n^2}{n^2} \left(\frac{4}{L^2} + \frac{(R/L)^4}{(R/t)^2} \right) \frac{E}{R} \]

(6)

このとき、周方向の座屈波数は外圧の場合と同様に、上式において最も低い座屈荷重を与える n の値を求めめた結果である。円筒殻の長さを表すパラメータ Z, R, t, および最大初期不整乱乱と初期不整モードを一様外圧の場合と同じにして、初期不整が座屈強度に与える影響について調べた。計算結果を Fig.7 に示す。

また、R/t を 400 に固定し、Z の値を変化させて座屈荷重に及ぼす初期不整の影響を調べた結果を Fig.8 に示す。

いずれの場合も、最も座屈荷重を低下させるモードは、初期不整のない円筒殻の座屈モードと一致している。軸圧縮を受ける円筒殻の場合に比べて、外圧および横圧を受ける円筒殻では周方向の初期不整波数が変化すると座屈強度は比較的大きく変化すると考えられた。なお、同じ最大初期不整強度のとき、Z=50 の円筒では R/t が大きくなると座屈荷重 P/R の値は若干低下する傾向がある。一方、R/t=400 で Z の値を変化させても P/R の値は同様であった。Z≥50 の長い円筒では、端部で半径方向変位を拘束している境界条件の影響は円筒中央まで及ばないため、Z の値が変化しても座屈荷重 P/R の値が変わらないことは予想されることであるが、R/t が大きくならることを初期不整量がある座屈荷重 P/R の値が著しく低下する傾向にある理由は説明できず、さらに検討が必要と考えている。

3. 球殻および円筒殻の座屈強度に及ぼす初期不整の影響

3.1 一様外圧を受ける場合

外圧を受ける球殻の座屈荷重は以下の式で与えられる。

\[P_d = 2E \sqrt{3} (1 - v^2) \frac{x}{(t/R)^2} \]

(7)

球殻の高さ方向に扁平化させた殻を、ここでは球円球殻と呼ぶことにする。まず、外圧作用下の球円球殻について、初期不整のない場合の座屈荷重を求めた。この場合、軸対称構造であるので、軸対称解析プログラム ASIS-BUCK を用いている。計算結果は球円球殻の最大曲率半径 (r = a/b) と同半径をもつ球円球殻の座屈強度とほぼ一致している。

球殻の場合には R/t の値にかかわらず、初期不整が \(\lambda = \frac{12(1-v^2)^{1/4}}{\pi^2} \sqrt{r/(t/R)^2} = 4 \) の領域に存在するときに座屈荷重が最も低下することが著者が計算で検討している。\(\lambda = 4 \) の初期不整形状は、半径方向に円筒殻を加えたとき、および集中的に熱ひずみを与えたときに変形モードに相当する。座屈荷重の低下することを示しており、円筒殻の場合も同様であると考えられる。

次に、初期不整形状が Fig.9 に示すように円形形状ならびに同心円形状である場合について座屈荷重を求めた。計算では AA' 方向に下式の初期不整を与えていた。

\[\delta = 0.2 \times \left(1 + \cos(\pi t/\beta) \right) / 2 \]

(8)

ここで、\(\beta \) は最大の初期不整を与えた位置からの角度である。また、B-B' 方向にも (8) 式と同様の形で初期不整を与えた。また、初期不整は曲率半径の最大下化の位置により、その領域として A' 方向および B'B 方向の範囲に設定した。なお、円筒殻の初期不整の場合には、適当な不整の変形が円筒殻の場を同様に、Msc. MARC の節点シミュレーションを行なっている。

Fig.10 に初期不整モードと座屈荷重の関係を示す。B-B' 方向の初期不整領域の値が 4 から離れるために、座屈荷重が大きくなくなったり、同心円上的初期不整のとき、最も座屈荷重が大きくなっている。なお、初期不整モードの \(\lambda \) の値が変化しても円筒殻の場合と異なり、座屈荷重の変化は比較的小さい。

\[R/t \]

Fig.7 Buckling load of cylinder under lateral pressure

\[R/t \]

Fig.8 Buckling load of cylinder under lateral pressure
ここに，f(ϕ)は初期不整のない場合の子午線方向の座屈モード（Fig.11に示した周方向応力が圧縮になる領域が変形するモード）であり，θ0は解析範囲の周方向内角である。

汎用FEM解析ソフトMARCを用いて計算した結果をFig.13とFig.14に示す。筒軸，初期不整がないときの座屈荷重では次元化して示している。
4. 積層シェル構造の座屈強度と初期不整の影響

3 章までの検討では、均一断面からなるシェル構造を対象としていたが、本章では、積層断面からなるシェル構造について検討する。特性の異なる材料を組み合わせた積層構造は、従来の単板材構造や補強材を基板構造に比較して、重量面や工学面の観点から有利な点があると考えられる。

本研究では表面に鋼板を配し、その内側に密度およびヤング率の小さな発泡材をコア材として充填した積層構造を考
える。均一断面構造と重量を同一とした積層構造を考えた場合には、コア材料の重量が鋼板厚が減少する。したが
って、均一断面構造に比べて面内剛性は減少することになる。

しかしながら、中性軸から遠いところに鋼板があるため、曲げ剛性は増加することになる。また、ヤング率の小さなコ
ア材がせん断剛性を受け持つことになり、せん断変形が生じやすくなる。このため、均一断面構造の場合に比較してせん
断変形の影響が大きくなり、座屈荷重が低下する可能性もある。したがって、積層構造の座屈荷重を明らかにするためにはせん断変形を考慮した解析が必要と考えられる。

しかししながら、2 章でも示した円筒殻の座屈評価式のように、せん断変形が円筒殻の座屈強度に及ぼす影響とす
る状況である。そこで、積層構造について、単位面積あたりの重量を均一にした条件下で、外圧を受ける円筒殻と積層の
座屈強度および座屈強度に及ぼす初期不整の影響について、均一断面構造との比較を行なった。

4.1 外圧を受ける積層断面円筒殻の座屈強度と
初期不整の影響

比較対象とした均一断面円筒殻は、R/L=100 (R=8000mm,
t=80mm), Z=50 の寸法とし、使用材料は鋼 (Es=206GPa, 比重γ=7.8) を仮定した。一方、積層断面構造としては、表面
に鋼板を配し、その内側にコア材料 (Ec=1/1000 ～ 1/50Es,
γ=0.3 ～ 1.4) を充填した 3 層の断面構造を仮定した。発泡
材のヤング率と比重の関係は、発泡ウレタンなどの材料物性を参考に Table 1 のように設定した。また、均一断面円筒殻
の鋼板厚を 80mm とし、これと重量を同一とした場合の積
層構造の各層厚を Table 2 に示す。これに、添字 s は鋼を、
c はコア材を、t は全体を示す。

まず、積層構造の座屈強度について、せん断変形の影響を
考慮しない場合の座屈荷重を求める。計算は軸対称解析プ
ログラム AXIS-BUCK を用いて行った。AXIS-BUCK では、いわ
ゆる Euler 標的な 2 節点軸対称シェル要素を用いており、せ
ん断変形は考慮されていない。また、均一断面片ばかり扱
ないが、等価荷重率 Eqa と等価厚さ tqa を下式のように選
び、積層断面の面内剛性と曲げ剛性と一致するようにしている。
なお、積層構造の面内剛性を E とし、曲げ剛性を D とする。

\[E_{qa} = E/t_{qa} \] ①

\[t_{qa} = \sqrt{12(1-\nu^2)D/(EA)} \] ②

その結果は、(4) 式において、E および t の代わりに等価
ヤング率 Eqa と等価厚さ tqa を代入した値と一致した。これ
より、せん断変形の影響を考慮しない範囲で(4)式は適用で
きることがわかる。

次に、積層構造の座屈強度を、これまでと同様に Msc. MARC
の 4 節点厚肉シェル要素 No. 75 を用い、断面を積層板
(composite)としてモデル化し、大変形解析を実施して求め
た。

![Fig.15 Cross section of laminated structure](image)

Table.1 Property of core

<table>
<thead>
<tr>
<th>MAT</th>
<th>γC</th>
<th>Ec/Es</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>1/1000</td>
</tr>
<tr>
<td>2</td>
<td>0.6</td>
<td>1/500</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>1/100</td>
</tr>
<tr>
<td>4</td>
<td>1.4</td>
<td>1/50</td>
</tr>
</tbody>
</table>

(Urethane) — — — (Epoxy)

Table.2 Total thickness (t_s) and skin plate thickness (t_p)

<table>
<thead>
<tr>
<th>γC</th>
<th>t_s</th>
<th>t_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>924</td>
<td>594</td>
</tr>
<tr>
<td>0.6</td>
<td>163</td>
<td>23.6</td>
</tr>
<tr>
<td>1.0</td>
<td>466</td>
<td>371</td>
</tr>
<tr>
<td>1.4</td>
<td>11.6</td>
<td>18.6</td>
</tr>
</tbody>
</table>

(Epox)
初期不整を有する殻構造の様々な応力状態における座屈強度

この際の周方向のモデル化範囲を決めるためには、座屈波数を知る必要があるが、(4)式で最小の座屈波数となる周方向を選んでいる。これは、せん断変形によるひずみエネルギーは、座屈波数にかかわらず一定であり、最低の座屈荷重を与える座屈モードはせん断変形を考慮しても変化しないことによる。なお、断面を積層板(composite)とせず、前述の軸対称殻の場合と同じに面内剛性と曲げ剛性が積層断面の値と一致するよう等価ヤング率 \(E_{eq} \) と等価板厚 \(t_{eq} \) を設定して通常の均一殻でモデル化する方法も考えられるが、この場合に面外のせん断剛性まで一致させる場合は一般の汎用解析ソフトでは出来ないことが多い。

Fig.16 に、積層断面円筒殻の座屈荷重を示す。縦軸は計算で得られた座屈荷重を均一断面円筒殻の座屈荷重で無次元化して示している。積層構造の座屈荷重は均一断面に比べて高く、例えばコア材としてウレタンフォームを想定した MAT1 およびエポキシ材を想定した MAT4 で、\(t_s/t_t = 0.1 \) の場合の座屈荷重は、均一断面円筒殻のそれぞれ約 8 倍と 4 倍になっており、積層構造の採用が座屈強度面から有利であることを示している。なお、積層構造の面内剛性 \(E_A \) および面外剛性 \(E_I \) を均一断面構造と比較して、Fig.17 と Fig.18 に示すが、上記の場合には、面内剛性がそれぞれ 0.6 倍と 0.82 倍、面外剛性は約 40 倍と約 15 倍になっている。

なお、せん断剛性のみの影響を調べるため、各積層構造について、曲げ変形とせん断変形を考慮した MSC.MARC による解析結果を、曲げ変形のみを考慮した ABAQUS-BUCK による結果で除した値を Fig.19 に示す。Fig.19 から、積層断面ではせん断変形の影響により座屈強度は 80% ～ 40% に低下することがわかる。

これらの結果より、せん断剛性の低下より曲げ剛性の増加の影響のほうが大きく、Fig.16 に示したように積層断面の座屈強度が均一断面に比べて増加したものと考えられる。

次に、積層構造の円筒殻に初期不整がある場合の座屈荷重について調べた。外圧をおける円筒殻の場合には座屈モードと同じ形状の初期不整が最も座屈荷重を低下させることを考え、初期不整モードとして座屈モードを与えた。最大初期不整の値としては、積層板の全板厚の 20%、あるいは鋼板厚の 20% を与えた。Fig.20 に示すように、全板厚の 20% の最大初期不整がある場合には、初期不整のない場合に比べて座屈荷重は 70% ～ 80% 程度に低下し、鋼板厚の 20% 程度の場合には座屈荷重は 90% 程度に低下するとの結果であった。

Fig.5 に示したように、均一断面の円筒殻の場合に座屈荷重が约 70% に低下したことを考えると、積層構造において初期不整が座屈荷重に及ぼす影響は、これに比較して小さい。
4.2 外圧を受ける積層断面球殻の座屈荷重と初期不整の影響

本節では、3.1節と同様にR/l=100の球殻を対象として計算を行った。積層球殻の座屈荷重をこれまでと同様にMSC.MARCの4節点厚肉シェル要素No.75を用いて求めた結果をFig.21に示す。縦軸は、積層断面球殻の座屈荷重を、均一断面の座屈荷重で除して示している。外圧を受ける円筒の場合に比べて座屈荷重の増加が小さいのは、座屈長が円筒の場合に比べて短く、せん断剛性の低下の影響が円筒殻に比べて大きいためと考えられる。

また、初期不整がある場合の座屈荷重をFig.22に示す。初期不整モードとして座屈モードを与えて計算している。Fig.10に示したように均一断面の球殻の場合には、板厚の20%の初期不整により座屈荷重が約55%に低下したが、積層構造では80%程度であり、外圧受ける円筒殻と同様に初期不整が座屈荷重に及ぼす影響は、均一断面の場合に比べて小さいことがわかった。

5. 結言

本研究では、円筒殻、球殻、筒円球殻などの殻構造に及ぼす形状初期不整の影響について、種々の応力状態（2軸圧縮、1軸圧縮、1軸圧縮+1軸引張りなど）において、どのような形状の初期不整が座屈荷重を最も低下させるかを、座屈前の非線形挙動を透視する有限要素法を用いた数値計算により調べた。その結果、以下のことが明らかになった。

1. 軸圧縮受ける円筒殻の場合には軸対称初期不整が存在すると、座屈強度が最も低下する。
2. これに対して、一様外圧や横圧を受ける円筒殻では、初期不整のないときの座屈モードと同じ形状の初期不整が存在すると、座屈強度が最も低下する。また、球殻、および筒円球殻の場合も同様である。
3. 円筒殻の場合には、初期不整モードが変わると座屈強
度が比較的大きく変化するのに対して、球殻や円筒球殻の場合に初期不整モードが変化しても座屈強度は小さい。

4. 圓筒球殻における初期不整による座屈荷重の低下は、球殻の場合に比較して、一様外圧による一様圧縮の場合に小さく、partial filling状態での一軸圧縮一軸引張りの場合に大きいことがわかった。

次に、重量面や工作面の観点から有利な点があると考えられる積層構造として、表面に鋼板を配置し、内側に密度およびヤング率の小さな発泡材をコア材として充填した積層構造を考慮、これを一様外圧を受ける円筒殻や球殻に適用した場合について、同様の手法で座屈強度を検討した。その結果、以下のことが明らかになった。

5. 均一断面構造と単位面積当たりの重量が等しい積層構造を比較すると、曲げ剛性の増加の影響の方が、面内剛性やせん断剛性の低下の影響よりも大きく、積層構造の座屈強度の方が均一断面構造よりも高くなる。

6. また、積層構造の方が座屈強度に及ぼす初期不整の影響も小さくなる。

今回の検討では、初期不整の大きさを板厚の20%としたが、これは、例えばECCS ruleでは、初期不整を板厚の25％を許容初期不整としていること。また、DNV ruleでも陽な形ではないが板厚の20%程度を許容値に設定していることを勘案した。板厚の20%程度の初期不整での座屈強度の低下率がわかれれば、初期不整の大きさが変化しても、Koiter理論などを適用して、比較的良い精度で座屈荷重を推定することは可能である。さらに、初期不整の影響を球殻や円筒殻の半径で無次元化して評価する方法も考えられるが、半径が変化しても弾性範囲であれば、初期不整量を板厚で無次元化して座屈強度に及ぼす初期不整の影響を整理すればよいと考える。なお、外圧を受ける球殻に対して参考文献11で示したように、塑性の影響まで含めると半径が大きくなると崩壊強度におよぼす初期不整の影響は小さくなる。初期不整が積層構造の座屈強度に及ぼす影響は複雑であり、本論文で全てが解明できたわけではない。塑性域の検討も含めて、今後さらに検討を行ってゆきたいと考える。

謝辞

本研究の一部は、文部科学省科学研究費（基盤研究（B））の補助を受けて実施いたしました。関係各位に謝意を表します。

参考文献

1) Det norske Veritas : Rules for the design, Constructions and inspection of off shore structure(1977)

4) Almroth, B.O. : Influence of imperfections and edge restraint on the axially compressed cylinders, NASA CR-432

5) 安川峰, 川上肇, 吉川孝男:初期不整を有する円筒殻の崩壊強度解析（軸圧縮を受ける短い円筒殻）、日本造船学会、第153号、1983

8) 安川峰, 川上肇, 吉川孝男:初期不整を有する球殻の圧縮座屈強度解析, 日本造船学会, 第151号, 1982