On the Effectiveness of Panting Stringers and Web Frames of a Ship (2nd Report)

By Jiro Suhara, Member*

Abstract

In the first report, the author studied the "Effectiveness of Panting Stringers and Web Frames of a Ship", and showed that the stringers with web frames whose sizes were determined by the Rules of Classification Societies are not strong enough to support side frames. Recently, however, strong stringers with web frames are often adopted, which is known as "Web and Stringer System". This paper gives the result of an analysis made to the structure of panting zone of an 8,750 G. T. cargo ship which has been strengthened in such a way as stated above and shows that the effectiveness of "Web and Stringer System" is practically sufficient in this case.

Introduction

In the first report,** the author studied the "Effectiveness of Panting Stringers and Web Frames of a Ship", and showed that the stringers with web frames whose sizes were determined by the Rules of Classification Societies are not strong enough to support side frames. Recently, however, strong stringers with web frames are often adopted, which is known as "Web and Stringer System". This paper gives the result of an analysis made to the structure of panting zone of a 8,750 G. T. cargo ship which has been strengthened in such a way as stated above.

Beside a close analysis on the above problem, the author has undertaken a simpler kind of calculation on the preceding problem. As the result of the comparison made to both the methods, i.e., a precise analytical method and a convenient calculation, the latter has been found to be appropriate as far as it is concerned with "the Web and Stringer System".

Assumptions and Procedures of Analysis

In this report, the uniform pressure of 1 kg/cm² is assumed to be applicable to the whole surface of shell plating in panting zone as the severest loading conditions.***

The structure between two transverse bulkheads in panting zone is consisted of two panting stringers and three web frames with side frames and shell plating as shown in Fig. 1. (Fig. 1 is omitted.) or Fig. 3. For simplicity, upper and lower ends of frames and web frames and connections of stringers to the bulkheads are assumed to be all clamped.

As the first stage, an analysis is given to a slightly different structure which has symmetrical arrangement of web frames and stringers in longitudinal direction and side frames of equal size, as shown in Fig. 2.

Received January 8, 1957

* Department of Naval Architecture, Faculty of Engineering, Kyushu University, Fukuoka, Japan.

*** The reason for adopting this condition is given in the 1st Report.
At this stage, the thickness of shell plating was assumed to be constant at all parts and equal as well to 13.5mm, the average value of real plating. However, as the size of the webs of upper and lower stringers are varied respectively, moments of inertia were treated separately and the values which had been obtained by calculated moment of inertia on each span separately for upper and lower stringers were applied.

In the 2nd stage, the result of the above calculation was compared to what was obtained by evaluating the moments of inertia of both upper and lower stringers on the basis of an assumption that both of them is equivalent to the mean of its real value.

And in the 3rd stage, calculation was made by assuming that the value of the moments of inertia I of both upper and lower stringers is equal to that which is given by

$$\left(1/I\right) = \left(1/2\right) \cdot \left\{1/I_u + 1/I_l\right\}$$ \hspace{1cm} (1)

where I_u and I_l are the actual values of the moments of inertia of upper and lower stringers respectively, as stated in the first step calculation.

Therefore, in the fourth step, the same assumptions as adopted in the third step are used only on the treatment of the moments of inertia of stringers, but actual arrangement of web frames and stringers are analized as shown in Fig. 3, where the thickness of shell plating is assumed to be taken 13mm and 14mm for the fore and aft part of Fr. No. 155 respectively, and moments of inertia of side frames are separately calculated for every web frame spacing.

In the last stage, a simple calculation was undertaken on the basis of an assumption that web frames subject the concentrated load which is equivalent to the total sum of the pressure, even and 1kg/cm² in its strength upon the part indicated with hatched lines in Fig. 4 (i.e., the part encircled by the straight lines that pass through the mid-points of adjoining spans of web frames and those of stringers) at each crossing point of every web frame and stringer, i.e., the crossing point P of a stringer and a web frame in Fig. 4 for instance.

In that case, the deflections of the web frames at the crossing points of the web frames and the stringers can be easily obtained by the elementary calculations.

The base lines of deflection curves of stringers are obtained by connecting rectilinearly the deflected crossing points of web frames and the stringers.

And superposing the deflection curves of stringers clamped at both ends of each web frame span of stringers, approximate deflection curves for stringers may be obtained, where the stringers are assumed to be applied to the uniform external pressure 1kg/cm² between the part divided by straight lines through mid-points between the stringers and adjoining stringers of consecutive spans of web frames.
On the Effectiveness of Panting Stringers and Web Frames of a Ship

Throughout all stages of analysis, the calculations of effective breadth of shell plating which are applied to the evaluation of the moments of inertia of all the stiffening members are made on the basis of C. H. A. Schade's theory* for the case where all the ends of side frames are clamped. And all the points at which stringers are connected to bulkheads have been assumed to be clamped, too. By using accurate or approximate deflection curves for stringers obtained by the above steps, it is possible to estimate the supporting forces of stringers to any side frame at their connecting points.

Comparing the bending moments in side frames due to external pressure applied to one frame spacing and supporting forces from stringers with the bending moments due to external pressure only, the effectiveness of panting stringers and web frames to any side frame is made clear.

Analysis for the Structure with Symmetrically Arranged Stringers in Longitudinal Direction

For the structure shown in Fig. 2, the analysis is performed by using the following data:

<table>
<thead>
<tr>
<th>Stringers</th>
<th>Location of Span</th>
<th>(0,1) and (2,3)</th>
<th>(1,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Span</td>
<td></td>
<td>l₁₁ = l₂₂ = 476 cm</td>
<td>l₁₂ = 541 cm</td>
</tr>
<tr>
<td>Mts of Inertia</td>
<td>Upper Stringer</td>
<td>I₁₀₁ = 11.698 x 10⁴ cm⁴</td>
<td>I₁₁₂ = 12.088 x 10⁴ cm⁴</td>
</tr>
<tr>
<td></td>
<td>Lower Stringer</td>
<td>I₁₀₂ = 14.281 x 10⁴ cm⁴</td>
<td>I₁₁₃ = 14.834 x 10⁴ cm⁴</td>
</tr>
</tbody>
</table>

| ratio of mts. of inertia | r₁₁ = I₁₀₁/I₁₀₂ = 1.222 | r₁₂ = I₁₁₂/I₁₁₃ = 1.230 |

<table>
<thead>
<tr>
<th>Web Frames</th>
<th></th>
<th>Web length, l₁₁ = 615 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spans of web frames, see Fig. 2</td>
<td>a = b = 205 m</td>
<td></td>
</tr>
<tr>
<td>Moments of inertia, I₁₁₁ = 33.276 x 10⁴ cm⁴</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Torsional rigidities of web frames are neglected, as they affect slightly the stringers.

<table>
<thead>
<tr>
<th>Side Frames</th>
<th></th>
<th>Side length, l₁₁ = 615 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spans of side frames, see Fig. 2</td>
<td>a = b = 205 m</td>
<td></td>
</tr>
<tr>
<td>Moments of inertia, I₁₁₁ = 0.5666 x 10⁴ cm⁴</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Formulae Derived from Separate Treatment of the Moments of Inertia of Upper and Lower Stringers. (1st Step of Analysis)

Equations of stringers at any span

Taking x axis along stringer and from each left end of span, the equations of flexure of stringers are

\[
\begin{align*}
\lambda_{uu} (d^4 y_u/d x^4) + \lambda_{ul} (d^4 y_l/d x^4) + y_u &= \eta_u \\
\lambda_{lu} (d^4 y_u/d x^4) + \lambda_{ll} (d^4 y_l/d x^4) + y_l &= \eta_l
\end{align*}
\]

(2)

where \(y_u \) and \(y_l \) are respectively the deflections of upper and lower stringers at any section of stringers, \(\eta_u \) and \(\eta_l \) are also the deflections of side frames at the crossing points of the stringers due to external pressure in the case where stiffening effects due to stringer are neglected. \(\xi = 0 \) and \(\xi = 1 \) correspond to the left and right ends of stringers at any span, suffix

01 or 12 is omitted so far as there is no fear of causing confusion, and in the same way, the following coefficients \(\lambda_{uu} \) etc. are given by

\[
\begin{align*}
\lambda_{uu} &= EI_{uu}P_{uu}S/l^4, \\
\lambda_{ul} &= EI_{ul}P_{ul}S/l^4, \\
\lambda_{lu} &= EI_{lu}P_{lu}S/l^4, \\
\lambda_{ll} &= EI_{ll}P_{ll}S/l^4
\end{align*}
\]

(3)

where, \(l \) is the span of stringer, and \(P_{uu} \) is the deflection at the crossing point of a given frame and the upper stringer when unit concentrated load is subjected at the crossing point of the frame and the lower stringer, and \(P_{ul}, P_{lu} \) and \(P_{ll} \) are defined similarly. Then the reciprocal theorem gives us the relation \(P_{ul} = P_{lu} \).

Parameters determined by relative flexural rigidities between side frames and stringers are defined as follows,

\[
\begin{align*}
\alpha_1 &= \left\{ \lambda_{uu} + \lambda_{ll} + \frac{1}{8} \left(\lambda_{uu} - \lambda_{ll} \right)^2 + 4 \lambda_{ul} \lambda_{lu} \right\}^{1/4} \\
\alpha_{11} &= \left\{ \lambda_{uu} + \lambda_{ll} - \frac{1}{8} \left(\lambda_{uu} - \lambda_{ll} \right)^2 + 4 \lambda_{ul} \lambda_{lu} \right\}^{1/4}
\end{align*}
\]

(4)

In this case \(a = b \) is put and we define following constants. \(K = (I_{uu}I_{rl})/(81 I_{rl}I_{rl}) \), \(r = r_{uu} = I_{uu}/I_{uu} \), then we have

\[
\begin{align*}
\alpha_1 &= \left\{ 8(1+r) + (64-7r+64r^2)^{1/4} \right\}/(10rK)^{1/4}, \\
\alpha_{11} &= \left\{ 18(1+r) - (64-7r+64r^2)^{1/4} \right\}/(10rK)^{1/4}
\end{align*}
\]

(5)

Denoting

\[
\begin{align*}
\beta_1 &= (1-4\alpha_1^3\lambda_{uu})/(4\alpha_1^4\lambda_{uu}) = (27-32\alpha_1^4K)/(22\alpha_1^4K), \\
\beta_{11} &= (1-4\alpha_{11}^3\lambda_{uu})/(4\alpha_{11}^4\lambda_{uu}) = (27-32\alpha_{11}^4K)/(22\alpha_{11}^4K)
\end{align*}
\]

We obtain the slope deflection coefficients derived from equations (2)

\[
\begin{align*}
A_{uu} &= (\beta_1 A(\alpha_1) - \beta A(\alpha_1))/\beta(\beta_1 - \beta), \\
A_{ul} &= r\beta_1(\beta_1 A(\alpha_1) - A(\alpha_1))/\beta_1(\beta_1 - \beta), \\
A_{lu} &= r\beta_1(\beta_1 A(\alpha_1) - A(\alpha_1))/\beta_1(\beta_1 - \beta), \\
A_{ll} &= -rA(\alpha_1)/\beta_1(\beta_1 - \beta),
\end{align*}
\]

(6)

where \(A(\alpha) \) etc. are the functions of \(\alpha \) which are given by (12) in the first report and by substituting the value of parameter \(\alpha_1 \) or \(\alpha_{11} \) obtained from (4) or (5).

Coefficients of flexure for web frames

Deflections of web frames of the connecting points of upper and lower stringers respectively may be

\[
\begin{align*}
\nu_u &= \mu_{web,uu}P_u + \mu_{web,ul}P_l \\
\nu_l &= \mu_{web,lu}P_u + \mu_{web,ll}P_l
\end{align*}
\]

(7)

where \(\mu_{web,uu} \) etc. are coefficients of flexure of web frames, then the reciprocal theorem gives us the relation \(\mu_{web,uu} = \mu_{web,ul} \).

Solving (7) with respect to \(P_u \) and \(P_l \) we obtain

\[
\begin{align*}
P_u &= (EI_{ul}/l^4) \cdot (\bar{\mu} \nu_u + \bar{\mu} \nu_l) \\
P_l &= (EI_{ul}/l^4) \cdot (\bar{\mu} \nu_u + \bar{\mu} \nu_l)
\end{align*}
\]

(8)

where

\[
\begin{align*}
\bar{\mu} &= (l_{12}^2/EI_{ul}) \cdot \left(\mu_{web,uu} - \mu_{web,ul} \right), \\
\bar{\mu}' &= -(l_{12}^2/EI_{ul}) \cdot \left(\mu_{web,lu} - \mu_{web,ll} \right)
\end{align*}
\]

(9)

When \(a = b \), we have

\[
\bar{\mu} = (2592 I_{web} I_{uh})/(5 I_{uu} I_{uu}), \\
\bar{\mu}' = -(1782 I_{web} I_{uh})/(5 I_{uu} I_{uu})
\]

(10)

Fixing moments and shearing forces of stringers, when they are fixed at every end of spans, are

\[
\begin{align*}
\bar{M}_{uu} &= \bar{\mu} \bar{\mu}' = \left\{ \beta_1(-1)(D_1 - C_1) - (\beta_1 - 1)(D_{11} - C_{11}) \right\} / (\beta_{11} - \beta_1), \\
\bar{M}_{ll} &= \bar{\mu} \bar{\mu}' = \left\{ \beta_1(-1)(D_1 - C_1) - (\beta_1 - 1)(D_{11} - C_{11}) \right\} / (\beta_{11} - \beta_1), \\
\bar{Q}_{uu} &= \bar{\mu} \bar{\mu}' = \left\{ \beta_1(-1)(H_1 - G_1) - (\beta_1 - 1)(H_{11} - G_{11}) \right\} / (\beta_{11} - \beta_1), \\
\bar{Q}_{ll} &= \bar{\mu} \bar{\mu}' = \left\{ \beta_1(-1)(H_1 - G_1) - (\beta_1 - 1)(H_{11} - G_{11}) \right\} / (\beta_{11} - \beta_1)
\end{align*}
\]

(11)
where double sign in front of right side of (11) represents the described quantities of (1, 0) end for upper sign, (1, 2) end for lower sign.

Elastic equation of stringers for any two consecutive spans \((\alpha - 1, \alpha)\) and \((\alpha, \alpha + 1)\).

The equilibrium equation of stringers for any two consecutive spans \((a - 1, a)\) and \((a, a + 1)\).

The equilibrium of moments of forces for upper stringer on the \(a\)-th web frame is

\[
\begin{align*}
\text{(EI)}_{a+1} \{D_{a1} + A_{a1} \cdot \theta_{a1} + (D_{a1} - C_{a1}) \cdot \psi_{a1}\} + \{D_{a1} + A_{a1} \cdot \theta_{a1} - (D_{a1} - C_{a1}) \cdot \psi_{a1}\} &= \{D_{a2} + A_{a2} \cdot \theta_{a2} + (D_{a2} - C_{a2}) \cdot \psi_{a2}\} + \{D_{a2} + A_{a2} \cdot \theta_{a2} - (D_{a2} - C_{a2}) \cdot \psi_{a2}\} \\
&+ \{D_{a1} + A_{a1} \cdot \theta_{a1} + (D_{a1} - C_{a1}) \cdot \psi_{a1}\} - \{D_{a1} + A_{a1} \cdot \theta_{a1} - (D_{a1} - C_{a1}) \cdot \psi_{a1}\}
\end{align*}
\]

Do. for lower stringer is omitted, as it is obtainable by interchanging the suffix \(u\) to \(l\) in the above equation.

The equilibrium of moments of forces for upper stringer on the \(a\)-th web frame is

\[
\begin{align*}
\text{(EI)}_{a+1} \{B_{a1} \cdot \theta_{a1} + (B_{a1} \cdot \psi_{a1})\} + \{B_{a1} \cdot \theta_{a1} - (B_{a1} \cdot \psi_{a1})\} &= \{B_{a2} \cdot \theta_{a2} + (B_{a2} \cdot \psi_{a2})\} + \{B_{a2} \cdot \theta_{a2} - (B_{a2} \cdot \psi_{a2})\} \\
&+ \{B_{a1} \cdot \theta_{a1} + (B_{a1} \cdot \psi_{a1})\} - \{B_{a1} \cdot \theta_{a1} - (B_{a1} \cdot \psi_{a1})\}
\end{align*}
\]

Do. for lower stringer is omitted by the same reason as stated above. In the above equations coefficients for \(\alpha, \alpha + 1\) span \((A_{a1})\) etc. are given by (6), \(\theta_{a1}\) and \(\theta_{a1}\) are respectively meant by the angles of rotation of the upper and lower stringers on the \(a\)-th web frame and \(v_{a1}\) and \(v_{a1}\) are simarily meant by the deflections of them at the crossing points of \(a\)-th web frame \(\overline{p}_{a}\) and \(\overline{p}_{a}'\) are given by (10), and \(\overline{M}_{a+a+1}, \overline{Q}_{a+a+1}\) etc. are given by (11).

\[\text{(12)}\]

\[\text{(13)}\]

End Conditions for Stringers.

If the ends of stringers connecting to the bulkheads are assumed to be clamped we may write (see Fig. 2)

\[
\begin{align*}
v_{01} &= v_{01} = v_{12} = v_{13} = 0, & \theta_{01} = \theta_{01} = \theta_{12} = \theta_{13} = 0 \\
v_{01} &= v_{01} = v_{12} = v_{13} = 0 & \theta_{01} = -\theta_{01} = \theta_{12} = -\theta_{12} = \theta_{13} = -\theta_{13} = 0
\end{align*}
\]

\[\text{(14)}\]

Applying the elastic equation of Stringes (12) and (13) etc. with ends conditions (14) to the spans \((0, 1)\) and \((1, 2)\), we obtain the equations referred to the deflections \(v_{u1}\) and rotations \(\theta_{u1}\) at the crossing points of No.1 web frame and both stringers respectively, we have simultaneous equations with respect to four unknowns \(\theta_{u}, \theta_{1}, v_{u1}\) and \(v_{1u1}\). Solving this equations and substituting the obtained values of \(\theta_{u1}, \theta_{1u1}\) \(\varphi_{u1} = v_{u1}/l_{12}\) and \(\varphi_{1u1} = v_{1u1}/l_{12}\) into following slope-deflection equations for stringers, we obtain the end moments at every ends of stringers as follows,

\[
\begin{align*}
M_{u+1} &= \{E_{u+1}l_{12}\} \cdot \{A_{u+1} \cdot \theta_{u} + A_{u+1} \cdot \theta_{1} - C_{u+1} \cdot \varphi_{u} - C_{u+1} \cdot \varphi_{11}\} + \overline{M}_{u+1} \\
M_{1+1} &= \{E_{1+1}l_{12}\} \cdot \{A_{1+1} \cdot \theta_{u} + A_{1+1} \cdot \theta_{1} - C_{1+1} \cdot \varphi_{u} - C_{1+1} \cdot \varphi_{11}\} + \overline{M}_{1+1} \\
M_{u+1} &= \{E_{u+1}l_{12}\} \cdot \{A_{u+1} \cdot \theta_{u} + A_{u+1} \cdot \theta_{1} - C_{u+1} \cdot \varphi_{u} - C_{u+1} \cdot \varphi_{11}\} + \overline{M}_{u+1} \\
M_{1+1} &= \{E_{1+1}l_{12}\} \cdot \{A_{1+1} \cdot \theta_{u} + A_{1+1} \cdot \theta_{1} - C_{1+1} \cdot \varphi_{u} - C_{1+1} \cdot \varphi_{11}\} + \overline{M}_{1+1}
\end{align*}
\]

\[\text{(15)}\]
Preliminary functions used in the calculation of deflections of stringers are defined as follows:

\[h_{11} = [h_1(\xi, \alpha)]_{t=0.5, \alpha = a_{11}}, \quad h_{111} = [h_2(\xi, \alpha)]_{t=0.5, \alpha = a_{11}}, \]

where the functions \(h_1(\xi, \alpha) \) and \(h_2(\xi, \alpha) \) were already introduced in the first report.

Deflection of upper stringer at the mid-point of \((0, 1)\) span is given by

\[y_{u.10} = h_{11} \cdot \overline{\beta}_{11} \cdot \overline{\eta} \cdot \beta_{11} \cdot h_{111} + \overline{\beta}_{11} \cdot h_{111} + \eta \cdot h_{111} \]

Deflection of lower stringer is given by

\[y_{l.10} = h_{11} \cdot \overline{\beta}_{11} \cdot \overline{\eta} \cdot \beta_{11} \cdot h_{111} - \overline{\beta}_{11} \cdot h_{111} - \eta \cdot h_{111} \]

Deflection of upper stringer at the mid-point of \((1, 2)\) span is given by

\[y_{u.12} = h_{11} \cdot \overline{\beta}_{11} \cdot \overline{\eta} \cdot \beta_{11} \cdot h_{111} + \overline{\beta}_{11} \cdot h_{111} + \eta \cdot h_{111} \]

Deflection of lower stringer is given by

\[y_{l.12} = h_{11} \cdot \overline{\beta}_{11} \cdot \overline{\eta} \cdot \beta_{11} \cdot h_{111} - \overline{\beta}_{11} \cdot h_{111} - \eta \cdot h_{111} \]

Reduction rates of dittos due to stringers respectively,

Reduction rate of do. at the mid-point of a side frame,

Bending stresses of dittos are respectively given by

\[\sigma_A = M_A / Z_{fr}, \quad \sigma_B = M_B / Z_{fr}, \quad \sigma_C = M_C / Z_{fr}, \]

where \(Z_{fr} \) is the section modulus of the side frame.

Numerical results obtained from above equations are shown in Table II at the end of this paper.

The Result of 2nd, 3rd and 4th Step of Analysis

In the 2nd step of analysis, above results are compared to a more simplified case where the moments of inertia of upper and lower stringers are assumed to be equal to their mean value, and in the third step calculation is made on the structure which is assumed to be of equal value to the moments of inertia of both stringer \(I \) given by...
Comparing numerical results based on above assumptions, it was made clear that the results derived from the above assumption (1) give the best approximation to that from accurate theory of 1st step.

Analysis for the Structure with Actual Arrangement of Stringers and Web Frames

In the fourth step of analysis, we deal with the structure shown in Fig. 3 of which scantlings and other data are given in Table II. But using the facts obtained above in preceding paragraph, we assume that the moments of inertia of upper and lower stringers are both equal to I, which is given by equation (1) for each span. Other assumptions referred to scantlings are already stated in the preceding paragraph for each span of stringer.

Analysis for this step are made by using the formulae given in 1st report but we treat six unknowns $\theta_1, \theta_0, \theta_b, v_1, v_2$ and v_3 in this case. Numerical results obtained by above mentioned calculations are shown in Table II with the results derived by approximate method already stated in Introduction.

Table II

<table>
<thead>
<tr>
<th>Deflections or Stresses and Their Reduction Rates</th>
<th>A End (Upper E.)</th>
<th>B End (Lower E.)</th>
<th>$I_e = \frac{1}{2} (I_a + I_b)$</th>
<th>Approx. Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{11} kg/cm²</td>
<td>1518</td>
<td>1414</td>
<td>1665</td>
<td>1457</td>
<td>1457</td>
<td>2060</td>
<td>1644</td>
</tr>
<tr>
<td>σ_{12} kg/cm²</td>
<td>80.24</td>
<td>81.64</td>
<td>80.95</td>
<td>81.05</td>
<td>72.84</td>
<td>2550</td>
<td>66.52</td>
</tr>
<tr>
<td>σ_{22} kg/cm²</td>
<td>2504</td>
<td>2376</td>
<td>2477</td>
<td>2455</td>
<td>2455</td>
<td>2550</td>
<td>2548</td>
</tr>
<tr>
<td>σ_{24} kg/cm²</td>
<td>67.40</td>
<td>69.08</td>
<td>68.41</td>
<td>68.04</td>
<td>66.80</td>
<td>66.80</td>
<td>66.55</td>
</tr>
<tr>
<td>σ_{44} kg/cm²</td>
<td>80.24</td>
<td>81.64</td>
<td>80.95</td>
<td>81.05</td>
<td>75.84</td>
<td>75.84</td>
<td>72.04</td>
</tr>
<tr>
<td>σ_{51} kg/cm²</td>
<td>1604</td>
<td>1291</td>
<td>1447</td>
<td>1445</td>
<td>1445</td>
<td>1445</td>
<td>1274</td>
</tr>
<tr>
<td>σ_{52} kg/cm²</td>
<td>1581</td>
<td>1273</td>
<td>1425</td>
<td>1428</td>
<td>1428</td>
<td>1428</td>
<td>1428</td>
</tr>
<tr>
<td>σ_{53} kg/cm²</td>
<td>1581</td>
<td>1273</td>
<td>1425</td>
<td>1428</td>
<td>1428</td>
<td>1428</td>
<td>1428</td>
</tr>
<tr>
<td>σ_{54} kg/cm²</td>
<td>1604</td>
<td>1291</td>
<td>1447</td>
<td>1445</td>
<td>1445</td>
<td>1445</td>
<td>1445</td>
</tr>
</tbody>
</table>

Parameter σ in above Table is given by $\sigma = \left(\frac{3}{2} I_e / I_{fe} \right) \left(I_{fe} / I_{fe} + 2 I_{fe} \right)^{1/4}$.

Table I

<table>
<thead>
<tr>
<th>Location of Span</th>
<th>(0,1)</th>
<th>(1,2)</th>
<th>(2,3)</th>
<th>(3,4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_{ST} cm</td>
<td>272</td>
<td>476</td>
<td>544</td>
<td>966</td>
</tr>
<tr>
<td>s cm</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>61</td>
</tr>
<tr>
<td>I_{fe} cm4</td>
<td>0.5725×10^4</td>
<td>0.5725×10^4</td>
<td>0.5614×10^4</td>
<td>0.5498×10^4</td>
</tr>
<tr>
<td>η cm</td>
<td>1.665</td>
<td>1.665</td>
<td>1.648</td>
<td>1.344</td>
</tr>
<tr>
<td>I_{ST} cm4</td>
<td>10.88×10^4</td>
<td>13.11×10^4</td>
<td>13.19×10^4</td>
<td>11.81×10^4</td>
</tr>
<tr>
<td>α</td>
<td>0.926</td>
<td>1.548</td>
<td>1.758</td>
<td>1.243</td>
</tr>
</tbody>
</table>
Conclusions and Acknowledgments

From Table II we obtain following conclusions:

(1) Effectiveness of panting stringers and web frames to side frames of the panting structure designed as “Web and Stringer System” is practically sufficient in this case.

(2) Analysis of them by the proposed conventional method gives fairly good approximation compared with the results derived from accurate theory.

The results presented in this paper are based on the Reports of Western Section of Ship Structure Committee of Japan. The author is grateful to the Committee for granting him an assistance to carry out the investigation.

The author offers his hearty acknowledgement to Prof. Y. Watanabe, Chief of Western Section of the Committee for his helpful suggestions in regard to the problems discussed in this paper.

He also feels much indebted to Mr. K. Moriya, Chief Surveyor of N. K. and Mr. S. Sato, Chief of Designing Section and Mr. N. Nakamura, Chief of Hull Designing Part in the same Section of Innoshima Shipyard, Hitachi Shipbuilding Co. for providing him with various data of propositions as well as valuable advices. Then he thanks to Mr. S. Shimizu, Assistant of the Faculty of Engineering, Kyushu University for his cooperation in carrying out the present investigation.

His last thanks are for Dr. G. Vedeler, Directing Manager of Norske Veritas, who was kind enough to support him with his sincere approval on the results of the first report of this investigation.