用語解説

（プロ）レニン受容体

腎臓の輸入細動脈に存在するständ球体細胞で産生されるプロレニンは、その大部分はそのまま構成的に血中に分泌されるが、一部はアミノ末端にある43アミノ酸残基からなるプロセグメントが切断されて成熟したレニンとなり（蛋白融解的活性化）。種々の刺激に応じて血中に分泌される。レニンはアンジオテンシノーゲンをアンジオテンシンⅠに変換する酵素活性（レニン活性）を有するが、プロレニンはこのレニン活性を有していない。

しかし、2002年にレニンやプロレニンとの結合蛋白質として同定された（プロ）レニン受容体は、とくにプロレニンと強い親和性を有し、プロレニンと結合してその分子構造を変化させることで、プロレニンのレニン活性を亢進させることが明らかとなっている（非蛋白融解的活性化）。血中的総レニンの約90%がプロレニンであることや、（プロ）レニン受容体が脳や心臓、腎臓、血管平滑筋などの重要臓器で発現がみられることから、（プロ）レニン受容体を介した局所レニン・アンジオテンシ系の活性化がさまざまな心血管系の病態形成に関与している可能性がある。さらに、1回貫通型蛋白質である（プロ）レニン受容体には、アンジオテンシンⅡ産生に依存しない受容体独自の細胞内情報伝達系が存在することが示唆されている。

つまり、（プロ）レニン受容体刺激により、培養メサンギウム細胞ではextracellular signal-regulated protein kinases（ERKs）の活性化、培養心筋細胞ではp38 mitogen-activated protein kinaseの活性化が生じることが報告され、注目を集めている。このようなアンジオテンシンⅡ産生に依存しない（プロ）レニン受容体の細胞内情報伝達系の詳細は明らかではないが、糖尿病性腎症の発症に関与していることが病態モデルで示されており、今後さらなる研究の発展が期待されている。

（千葉大学大学院医学研究院心血管病病理学研究所、循環病態科学　赤澤　宏, 小笠一成）