高血圧研究の進歩

はじめに

2008年は、本邦での大规模臨床試験のデータに基づき高血圧治療ガイドライン（JSH2009）に向けた最終改訂作業が行われ、特定健康診査ははじまるなど、今後の高血圧治療において重要な年であったといえる。また、高血圧研究面においても、レニン・アンジオテンシン系研究やアディポネクチン、高血圧関連遺伝子などの分野で新たな発見があり、今後の高血圧治療への応用が期待できる報告が多くなされた年でもあった。本稿では、2008年の高血圧に関連した基礎研究、および臨床研究での進歩について概説する。

基礎研究

1. レニン・アンジオテンシン (RA) 系研究

2008年は、RA系研究の中でもとくに、angiotensin-converting enzyme 2 (ACE2), angiotensin-(1-7) (Ang-(1-7)) が注目された年である。2000年にACE2が発見され、ACE2が、Ang IIを加水分解してAng-(1-7)を産生する経路が発見された（図1）。このACE2, Ang-(1-7)が、降圧系として、昇圧系であるAng IIの経路と拮抗して働くことが明らかとされた。Xuらは、Ang-(1-7)の受容体であるMas受容体の遺伝子欠損マウス（FVB/N-Mas-deficient mice）を用いた検討を行った。このMas受容体遺伝子欠損マウスでは、内皮依存性血管拡張反応の低下、内皮におけるNO合成酵素の発現低下およびNO産生低下をきたし、血圧の上昇を認めた。さらに、このマウスの血管において、酸化ストレスが増加しており、活性酸素の増加が血圧上昇に関与している可能性があることを報告している1)。

また、Rentzschらは、spontaneously hypertensive stroke-prone rats（SHRSP）の血管平滑筋細胞にACE2を過剰発現させ、SHRSPと比較検討を行った。SHRSP-ACE2では、SHRSPに比して、血中のAng-(1-7)が有意に増加しており、血圧も低値であった。そして、Ang IIによる血管収縮反応は、SHRSP-ACE2で減弱しており、ACE2阻害薬によりこの反応が消失することを報告した3)。一方、腎障害との関連では、Reichらが、ヒトの糖尿病性腎症で、腎におけるACE2 mRNAおよびACE2蛋白発現が低下しており、ACE2低下が、腎障害進展に関与している可能性を示した3)。ACE2/Ang-(1-7)/MAS受容体系は、降圧および臟器保護への関与が示唆され、今後臨床への応用が期待される。

[Key words] 高血圧、レニン・アンジオテンシン系、アディポネクチン、高血圧遺伝子、高血圧治療ガイドライン
アディポネクチン研究

これまで、アディポネクチンは、生活習慣と密接に関連しており、インスリン抵抗性や心血管疾患と関連することが報告されていた。ヒトにおいては、血漿アディポネクチンレベルが、肥満、糖尿病、脂質異常症、心血管疾患などの患者で低下していることは知られていた。最近では、血漿アディポネクチンレベルと血圧間関係する可能性があることが示唆されている。

2008年、Liらは、非糖尿病者1,048人の日本人および中国人を対象とした、Stanford-Asian Pacific Program in Hypertension and Insulin Resistance Study (SAPPHIRE)において、高血圧患者では、血漿アディポネクチンレベルがコントロール群に比べて有意に低値であり、年齢、性別、インスリン感受性の指標であるHOMA2%Sで補正後も、血漿アディポネクチンレベルが、血圧値と負の相関を示したことを報告した。またLeeらは、angiotensin II type 1 receptor blocker (ARB)が、2型糖尿病モデルであるOLETFラットにおいて、アディポサイトを小型化し分化型へと変化させ、アディポネクチンを増加させるとともに、monocyte chemoattractant protein-1 (MCP-1)を減少させることを報告した。これにより、レニン・アンジオテンシン体系が、脂肪細胞の分化およびアディポサイトカインの合成に影響を与えることを示唆するものである（図2）。

高血圧、糖尿病、肥満、脂質異常症などは、慢性腎臓病（CKD）発症のリスクファクターであることが知られている。そして、アルブミン尿は、高血圧、肥満、糖尿病と関連し、心血管疾患や腎障害のリスクファクターであることが知られている。Sharmaらは、アディポネクチンノックアウトマウスでは、アルブミン尿が増加し、上皮細胞肥大の融合が認められることを報告した。そして、アディポネクチンが、AMPKを介して嫌食ストレスを減弱させ、上皮細胞肥大の消失を改善することでアルブミン尿が減少する可能性を示した。今後、高血圧や糖尿病、さらには...

図1 ACE2・Ang(1-7)系と生理機能
CKDにいたるまで、アディポネクチンの幅広い領域での治療への応用が期待される。

本態性高血圧に関連する遺伝子解析

本態性高血圧には、環境因子と遺伝因子が関与する。これまでにアングリオンシノーゲン（AGT）遺伝子多型、アングリオンシン変換酵素（ACE）遺伝子多型など、レニン・アングリオンシン系関連遺伝子と本態性高血圧との関連が注目され報告されてきた。2008年には、プラキドン酸を20-ヒドロキシアセタオレノン酸（20-HETE）に変換する酵素で、チトクロームP450ファミリーの一つであるCYP4A11の遺伝子のハプロタイプが、日本人男性の本態性高血圧と関連することが報告された。CYP4A11遺伝子は、クロマソーム1p33に存在し、ヒトにおいて120以上ものsingle-nucleotide poly-morphisms（SNPs）が知られている。

Fuらは、日本人男性・女性において、本態性高血圧とCYP4A11遺伝子の関連をhaplotype-based case control studyで検討を行い、rs1126742のTC+TT型が、本態性高血圧と関連することを報告した7)。また、杉本らは、端野・遊郭町研究において、CYP4A11遺伝子多型と本態性高血圧の関連を検討した。彼らは、CYP4A11の-845A/Gの遺伝子多型が、日本人の本態性高血圧と関係する可能性を示した8)。その他、ACE遺伝子多型やAng II type-1 receptor（AGTR1）遺伝子多型が、降圧薬の降圧効果に影響を与えることを示唆する報告や、高压性発症リスク多型の数が集積するほど、血圧上昇度は大きくなり、高血圧発症のリスクが増加することが示されるなど、今後、高血圧の遺伝子診断やテーラーメイド医療への応用
図3 年齢別の収縮期および拡張期血圧と総死亡率の関係
（Murakami Y et al: Hypertension 2008; 51: 1483-1491より引用）

用が期待される多くの報告がなされた。

臨床研究

1. 高血圧の疫学

血圧と総死亡率の関係が注目されていたが、single cohort studyにおいてこの関係を解析することは困難であった。2008年、村上らは、東野・壮観町研究、久山町研究、大迫研究、JACC studyなど、日本における13のコホート研究を含むEvidence for Cardiovascular Prevention From Observational Cohorts in Japan（EPOCH-JAPAN）において、心血管疾患をもたない日本人176,389人（男性：65,463人、女性：110,926人）を対象として、血圧と総死亡率との関係について解析を行った。この解析では、喫煙、飲酒、BMIで補正したところ、40歳以上のいずれの年齢においても、血圧が高値であるほど、総死亡率が高くなることが示された（図3）。そして、この傾向は男女ともに、高齢者に比べて若年者でより顕著であった。これにより、日本人において年齢に関係なく、血圧を管理することが重要であることが示唆された。
2. 腎と高血圧
2008年7月に日本腎臓学会と日本高血圧学会が合併で、「CKD（慢性腎臓病）診療ガイド 高血圧編」を発刊し、CKDに対する高血圧治療の指針が示された。CKDに対する降圧法は、腎障害進行と心疾患発症の予防を目的とし、その降圧目標は、収縮期130 mmHg未満かつ拡張期80 mmHg未満（尿蛋白1 g/day以上の場合には、さらに低く125/75 mmHg未満）とされた。また、降圧薬の第一選択は、腎保護作用を期待してRA系抑制薬（ACE阻害薬またはARB）であることが明記された10）。高血圧はCKD発症・進行に関与し、CKD、高血圧は、血管疾患の発症、進行に関与することから、明確な降圧目標が明記されたことにより、今後、透析導入患者や心血管疾患患者の減少に繋がることが期待される。

3. 本邦の臨床試験のエビデンスとJSH2009
2006年10月の福岡で開催されたISH（国際高血圧学会）において、高リスク高血圧患者におけるJIKEI Heart Study11）、CASE-J12）、高齢者高血圧におけるJATOS13）、糖尿病性腎症に対するINNOVATION14）、SMART15）が、そしてその後、CASE-Jのサブ解析や、腎障害におけるCARTER16）、冠動脈疾患におけるHIJ-CREATEなど、本邦において高血圧対象を用いた大規模臨床試験や、そのサブ解析の結果が報告されてきた。これまで、ほとんど大規模臨床試験が行われていなかった本邦においては、画期的なことといえる。そして、これら本邦のエビデンスをもとに、JSH 2009がまとめられた。2004年にJSH 2004として高血圧治療ガイドラインが改定されて以来5年ぶりに、ガイドラインの改定が行われ、2009年1月にJSH 2009が発表されている。2008年の10月に札幌で行われた、第31回日本高血圧学会において改訂作業が進められ最終案が報告された。

JSH 2009では、本邦で行われた大規模臨床試験（CASE-J、JATOS、JIKEI Heart Study、SMART、INNOVATION、CARTER）の結果を踏まえ大幅改訂が行われている。また、改訂にあたり、作成委員に加えて、多くのリモント委員、査読委員、評価委員を倠に、討論をホームページで公表し、一般医師や市民からの意見公募や、高血圧学会でシンポジウム討議を行うなど、きわめて透明性の高い形で検討が行われたのが大きな特徴である。

JSH 2009における主な変更点としては、①血圧値の分類において軽症、中等症、重症から正常値、Ⅰ度高血圧、Ⅱ度高血圧、Ⅲ度高血圧に変更されたこと、②リスクの層別化に伴い、血圧以外のリスク要因としてメタボリックシンドロームとCKDが加えられたこと、③降圧薬の第一選択薬は、ARB、ACE阻害薬、Ca拮抗薬、利尿薬、β遮断薬の5種類となり、α遮断薬が削除されたこと、④高齢者においても降圧治療により、心血管イベントが有意に減少することが示されたこと、⑤糖尿病合併高血圧において、血圧130/80 mmHg以上では、生活習慣の改正と同時に薬物治療を開始することが推奨され、第一選択薬をARB、ACE阻害薬としたことなどがあげられる。

おわりに

本稿では、2008年の高血圧に関連する基礎研究および臨床での進歩を概説した。わずか1年間ではあるが、とくに基礎研究データが多数報告され、今後の臨床への応用を期待したい。また、これまで、欧米のデータに基づいたガイドラインの作成がなされていたが、日本の疫学データの集積により、日本人のデータに基づいたガイドラインの作成が行われた点は、本邦の高血圧治療に大きな意義をもつものと考えられる。

文献

2）Rentzsch B, Todiras M, Fliescu R et al: Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and
improves endothelial function. Hypertension 2008; 52: 967–973


10) CKD (慢性腎臓病) 診療ガイド 高血圧編, 日本腎臓学会・日本高血圧学会（編）, 東京医学社, 東京, 2008


