1E2-3

全身振動感覚に及ぼす音刺激の影響
○寺山 聡（日本大学大学院理工学研究科）、
松田 礼、町田 信夫（日本大学理工学部）

Influence of sound stimuli on whole body vibration sensation
Satoshi TERAYAMA, (Graduate School of Science & Technology, Nihon Univ.),
Hiroshi MATSUDA, Nobuo MACHIDA (College of Science and Technology, Nihon Univ.)

1. はじめに

乗り物や建設作業機械では運転や接地面から
振動と音が発生し、乗員はそれを同時に受ける
環境に置かれることが多い。振動環境の評価
尺度にはISO2631の人体の全身振動暴露基準が
用いられるが、振動と音が同時に存在する場合の
評価方法については検討していない。

本研究は振動と音の複合環境において、振動
感覚に及ぼす音の影響を明らかにすることを目的
としている。本報では振動と音を同時に暴露した
場合の振動感覚をマグニチュード推定法（ME法）と
評定尺度法で測定し、振動を単独で暴露した条件
と比較、検討した結果について報告する。

2. 実験方法

2.1 実験概要

実験は、振動加振機上に着座した被験者に鉛直
方向の振動を与えると同時にヘッドホンから音を
暴露した。振動感覚に音が及ぼす作用を比較検討
するため、振動単独での実験も実施した。実験
条件はランダムで提示した。1条件の実験時間は
暴露時間30秒、暴露後のアンケート回答及び休憩
時間を60秒の計90秒である。連続実験時間は、
被験者による身体的負担を考慮し、長さ1時間と
した。被験者は21～23歳の男子大学生15人である。

2.2 実験条件

振動条件は表1に示す12種類の鉛直正弦波
振動とした。振動周波数は2Hzより16Hz、振動の大き
さは70～90dBの振動加速度レベル (VAL) を設定
した。一部の解析において、JIS C 1510による周
波数補正値で補正した振動レベル (VL) を使用した。

音条件は表2に示すように、楽音（ピアノのみ
のDTM音源「展覧会の絵～プロムナード～」）、
騒音レベルが一定のホワイトノイズ (WN) とWNの
騒音レベルを楽音のテンポに合わせて時間変動
させた変動雑音の2種類の雑音を使用した。

音条件の音量は以下の事前実験により設定した。
まず、被験者に表1の振動と表2の音を同時に暴露

\[
\begin{array}{|c|c|c|}
\hline
\text{振動周波数} & \text{VAL[VL][dB]} \\
\hline
2Hz & 70(67) & 80(77) & 90(87) \\
4Hz & 70(70) & 80(80) & 90(90) \\
8Hz & 70(69) & 80(79) & 90(89) \\
16Hz & 70(64) & 80(74) & 90(84) \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
\text{音条件} & \text{テンポ[BPM]} \\
\hline
\text{展観会の絵～プロムナード～[楽音]} & 90 \\
\text{変動雑音 [変動 WN]} & 90 \\
\text{雑音 [WN]} & - \\
\hline
\end{array}
\]

図1 音と振動を同等の強さに感じる
等価騒音レベルと振動レベルの関係

し、「音と振動が同等の強さに感じる等価騒音
レベル」を調整法で求めた。次に、得られた図
1に示す結果 (R=0.7以上、標準偏差10dB未満)か
ら回帰式を求め、「振動と音の強さを同等に感じ
るレベル（等感覚）」の等価騒音レベルを定めた。
そして、標準偏差を考慮し、感覚音に5dB、10dB
を加えた「振動より音を強く感じるレベル（音優
位）」、等感覚から5dB、10dBを引いた「音より振
動を強く感じるレベル（振動優位）」を設定した。

2.3 振動感覚の測定方法

振動感覚として振動の感覚的強さと振動の快・
不快感を測定した。振動の感覚的強さは、感覚量
を1～100の整数で直接評価させるMP法を用いた。
振動の快・不快感は、「どちらでもない」を中心
に、「やや」、「かなり」、「非常に」を用いた両極
7段階の評定尺度法を用いて+3〜-3で評価した。
3. 実験結果

図2に、振動の感覚的強さと振動条件の関係を音条件ごとにまとめ、振動単独と比較した結果を示す。振動の感覚的強さは、VALが大きくなると増加した。また、VAL80dBのとき振動単独に対して音を暴露すると僅かな減少傾向がみられた。図3に、振動周波数4Hzの振動単独と各音条件における振動の感覚的強さを示す。VAL80dBの振動条件では、楽音と変調WNは一点鎖線で示した振動単独に比べ、振動の感覚的強さが減少する傾向がみられた。また、等価騒音レベルの違いによる振動の感覚的強さの変化はみられなかった。

図4に、振動の快・不快感と振動条件との関係を示す。平均値で比較すると、振動の不快感は音の暴露により振動周波数8Hz、及び各振動周波数のVAL90dBの振動条件下で増加する傾向であった。しかし、ダネット法による多重比較検定において振動単独（対照群）との有意差は確認できなかった（P=0.05）。なお、振動周波数2Hz、16Hzは標準偏差が他周波数に比べ大きい傾向にあった。図5に、振動周波数4Hzの振動単独と各音条件における振動の快・不快感を示す。VAL70dB、80dBの条件では、楽音を暴露すると振動単独時より不快感が減少する傾向であった。また、変調WNも楽音と比べて影響は小さいが減少傾向がみられた。しかし、等価騒音レベルが変化しても、振動の快・不快感に差はみられなかった。

4. おわりに

振動の感覚的強さは、振動周波数が4Hz、8HzでVAL80dB程度の振動に音刺激を加えると振動単独条件に対して小さくなる。振動の不快感は振動周波数が8Hz及び、VAL90dB程度の振動に音を暴露すると増加する。また、VALが比較的小さい70～80dBの範囲では、楽音と変調WNによる不快感の減少効果が現れる。これらより、人間の振動に対する感度が高い周波数4～8Hzの振動で、かつVAL80dB程度の振動に楽音等の音刺激を加えると、振動の感覚的強さや不快感を減少させる効果があると考えられる。

5. 参考文献