 Cushion fitting of spring bed to different physiques
OKeisuke Mizutani, Nobutoshi Yamazaki (Keio Univ., Fac. of Sci. & Tech.)

1. はじめに
心地良いと感じる寝具のクッション条件には個体差があり、立位背面形状や肥満度などの身体特徴が好みに関係しているといわれている。このため本研究では、身長方向に16分割され、各支持面のばね定数を無段階に調節できる可変ばね式実験ベッドを使用して、好みのクッション特性を詳細に調べ、そのクッション特性を実用的なスプリングベッドに変換する方法を考察した。

2. 身体適合クッション特性
可変ばね式実験ベッドを用い、健常男性50名(21歳~59歳)の仰臥位における好みのクッション条件を取得した。この結果、好みのクッション硬さ分布の傾向は、第1胸椎点、腓骨外反間を1:1:2の割合で胸郭部、腰郭部、脚部に分割すると、図1のようにそれぞれにおいて2タイプに分類できた。

各タイプと身体特徴の関係を調査した結果、図2のようにタイプaは肥満型の者に、タイプbは痩せ型の者により多く好まれていることが分かった。肥満型の者は、腰部のクッションを柔らかくすることで脚部に荷重を集約させ、腰部の過度の荷重を防いでいると考えられる。一方、痩せ型の者は皮下脂肪が薄く体表面の圧力に敏感であるため、腰部のクッションを硬くすることで脚部に集中する荷重を分散させ、また下腿部が比較的軽く沈み込みが小さいため、クッションを柔らかくすることで下腿が上がり過ぎるのを防いでいると考えられる。

3. 身体適合スプリングベッド
3-1. 実験ベッドのクッション特性からスプリングベッドへの変換
スプリングベッドのクッション硬さは内部コイルのばね定数だけでなく、単位面積当たりのばねの個数に左右される。
図4 スプリングベッドの単位面積当たりのばね定数の算出

しかし本研究で用いた実験ベッドは、すのこ状の板で構成されているため、沈み込みによって接触面積が変化する一般的のフレームマットやスプリングベッドとはクッション硬さの意味が異なる。そこで、図3に示す測定器を用い、入力の寸法に合わせて製作した特殊な板を押しつぶしてスプリングベッドのクッション特性を測定した結果、図4のように単位面積当たりのばね定数で考えれば、実験ベッドのクッション硬さとの間に線形の関係があることが分かった。

3-2. 身体適合スプリングベッド

実験ベッドで被験者が設定した好みのばね定数の平均は2.7N/mmであった。この硬さはスプリングベッドでは7.3×10⁻⁶N/mm²の硬さ(コイル径60mm、ばね定数0.26N/mmのばねを密に並べた状態に相当)に換算される。この付近の硬さのスプリング材3種類を用いて、図1のクッション分布に近似するように、図5に示す肥満型、瘦せ型用のスプリングベッドを試作した。

図5 身体適合スプリングベッド

表1 均一クッションとの寝心地の比較[%]

<table>
<thead>
<tr>
<th>寝心地</th>
<th>「肥満型」</th>
<th>「瘦せ型」</th>
</tr>
</thead>
<tbody>
<tr>
<td>均一クッションより良好</td>
<td>70</td>
<td>67</td>
</tr>
<tr>
<td>均一クッションと同じ</td>
<td>10</td>
<td>33</td>
</tr>
<tr>
<td>均一クッションより悪い</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

3-3. 検証

この2種類のスプリングベッドの寝心地を健常男子学生19名で行った結果、図6のようにローレル指数118以上の者が「肥満型」、118以下の者が「瘦せ型」を選んだ。また、全体の単位面積当たりのばね定数を5.7×10⁻⁶N/mm²にした(コイル径60mm、ばね定数0.21N/mmのばねを密に並べた)均一クッションと寝心地の比較を行った結果、図1のように「肥満型」、「瘦せ型」ベッドを好んだ者の割合であれにおいて、7割近くの者が均一クッションより寝心地が良いと答えた。

4. おわりに

試作したスプリングベッドは、様々なコイルを組み合わせて容易にクッション分布を調整できるが、表面材によってその違いが平滑化される傾向にある。このため、今後はクッション分布が接触感に反映されるようなクッション構造の検討が必要であると思われる。

参考文献

1) 立川律哉，他: 可変ばね式実験ベッドの開発と身体要因別適合クッションの検討，人間工学，29(特)，520-521，1993.