当院における乳幼児同種血非使用体外循環の現状

石曽根明浩　曽根慎一　梅園直樹　田辺克也

要　旨
当院で開発した小児用小型人工心肺システムは、総充填量が230ml前後（195～250ml）である。1998年3月現在、この人工心肺システムを用いて71例の体外循環を行い、そのうち42例が同種血非使用体外循環であった。3kg、4kg台にはアルブミンを、5kg、6kg台にはヒドロキシエチルデンプンを初期充填液並びに体外循環中に使用した。また、ECUM回路を改良して血液希釈を軽減させた。このシステムより、4kg以下の乳児の同種血非使用開心術が可能になった。

Key words：小型人工心肺システム、同種血非使用体外循環

I．緒　言
乳幼児の同種血非使用開心術を目指し、我々が開発した小型人工心肺システムによる体外循環を1996年10月より開始した。今回はこのシステムを使った症例と体外循環方法を報告する。

II．対　象
1996年10月から1998年3月までに小型人工心肺システム（人工心肺装置、回路：トノクラ医科工業社製、人工肺：POLISTAN社Safe Micro）を使用した71例中、無輸血を目標とした症例は48例あり、そのうち42例が術中、術後とも同種血を使用しなかった。この42例の平均年齢は5.09±2.06ヶ月（2～11ヶ月）、平均体重は5.01±0.8kg（3.50～6.22kg）である。表1に体重別・疾患別症例数を示す。

III．方　法
1．体外循環方法
1）充填液組成
表2に充填液組成を示す。血液濃度を維持するためには、3～4kg台には25％アルブミンを、5～6kg台にはヒドロキシエチルデンプン

表1　体重別・疾患別症例数

<table>
<thead>
<tr>
<th>体重別症例数</th>
<th>疾患別症例数</th>
</tr>
</thead>
<tbody>
<tr>
<td>3kg台…4例</td>
<td>VSD…31例</td>
</tr>
<tr>
<td>4kg台…16例</td>
<td>ECD…5例</td>
</tr>
<tr>
<td>5kg台…17例</td>
<td>CoAComplex…3例</td>
</tr>
<tr>
<td>6kg台…5例</td>
<td>TAPVC…2例</td>
</tr>
<tr>
<td></td>
<td>ASD…1例</td>
</tr>
</tbody>
</table>

（サリンヘス）を使用した。また、数年前から乳

表2　初期充填液組成

<table>
<thead>
<tr>
<th>体重3～4kg台</th>
<th>体重5～6kg台</th>
</tr>
</thead>
<tbody>
<tr>
<td>ヘパリン</td>
<td>100単位/kg</td>
</tr>
<tr>
<td>メイロン</td>
<td>10ml</td>
</tr>
<tr>
<td>マンニトール</td>
<td>2.5mg/kg</td>
</tr>
<tr>
<td>ビタミンC</td>
<td>1000mg</td>
</tr>
<tr>
<td>スキプロール</td>
<td>5～10ml</td>
</tr>
<tr>
<td>セファメジン</td>
<td>500mg</td>
</tr>
<tr>
<td>25％アブミン10～20ml</td>
<td>15ml</td>
</tr>
<tr>
<td>酢酸リンゲル</td>
<td>195ml～230ml</td>
</tr>
</tbody>
</table>

※195mlは動脈フィルターを外す

体外循環技術 Vol.26 No.1
酸リンゲル液よりも代謝が速い酢酸リンゲル液を使用している。なお、カルテリオトミーリザーバーの初期レベルは30～40ml/ℓである。
2）体外循環中の操作
ローラーポンプによる送・脱血法は、灌流指数を2.5ℓ/m²/minを目標にしている。体外循環中の最低温度は症例によって異なり、脇温で28～31℃としている。心筋保護はポンプを使用せず術野からシャンジで注入している（心筋保護液はGIKと人工心肺血を1：1で混ぜたものを10ml/kg注入）。また、血液を使用しないためBase Excessはマイナスになりがちであるためメイコンにて補正している。体外循環中の電解質はNaを140mEq/l前後に、Kは4～5mEq/lに補正している。ECUMを常時作動させているため、特にNa,Kは下がりやすいので注意している。
なお、体外循環中のリザーバーレベルは症例によって異なるが、100ml/ℓ前後を維持するようになっている。体外循環終了後の回路内残血は血液バッグにできる限り回収して麻酔医に渡す。
3）ECUMによる体外循環中の血液洗浄（ZUF）
体外循環による活性化補体や他の物質などを吸着もしくは流過洗浄する目的で行っている。代用液を補液しながら1時間に200ml/ℓ前後洗浄する。時間は体外循環total flowから体外循環終了前までである。ポンプ流量は140ml/min前後である。代用液は充填液と同様に3～4kg台には25％アルブミン10mlを、5～6kg台にはサリンヘス5ml/kgをそれぞれ酢酸リンゲル液で希釈して使用している。また、市販されているECUM回路では充填量が多くため、新たに回路を作製し、回路と流過器（旭メディカルAPF-01D）を合わせた充填量は25ml/ℓで血液希釈を軽減させた。なお、体外循環終了後MUFは施行していない。

IV．結果
図1にヘマトクリット(以下，Hct)値の推移を示す。平均術前Hct値は33.4±5.4％、体外循環中の平均最低Hct値は16.5±2.9％、最低は3.69kg的心室中隔欠損症の11％であった。体重が軽い症例ほど術前並びに術中のHct値は低値を示したが、いずれも退院前には術前値と同じ程度まで回復した。
図2に総タンパク値(以下，TP値)の推移を示す。タンパク製剤使用例、非使用例とも平均術前

<table>
<thead>
<tr>
<th>表3 体外循環中の経過</th>
</tr>
</thead>
<tbody>
<tr>
<td>体外循環時間（分）</td>
</tr>
<tr>
<td>大動脈遮断時間（分）</td>
</tr>
<tr>
<td>最低ヘマトクリット(％)</td>
</tr>
<tr>
<td>拡張タンパク値(g/dl)</td>
</tr>
<tr>
<td>タンパク製剤使用</td>
</tr>
<tr>
<td>最低Base Excess値</td>
</tr>
<tr>
<td>Base Excessの補正</td>
</tr>
<tr>
<td>体外循環中尿量(ml/kg/hr)</td>
</tr>
<tr>
<td>体外循環中ECUM量(ml/kg/hr)</td>
</tr>
<tr>
<td>液量バランス（ml）</td>
</tr>
</tbody>
</table>

![Hct (%) vs. Time](image1)

図1 ヘマトクリット値の推移

![g/dl vs. Time](image2)

図2 総タンパク値の推移

58 体外循環技術 Vol.26 No.1
表4 ICU帰室後の経過

<table>
<thead>
<tr>
<th></th>
<th>CVP(cmH2O)</th>
<th>揮管時間(hr)</th>
<th>ICU滞在(日)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3kg台</td>
<td>13.2±1.4</td>
<td>7.2±1.6</td>
<td>4.5±0.6</td>
</tr>
<tr>
<td>4kg台</td>
<td>11.0±2.9</td>
<td>6.2±3.5</td>
<td>3.4±1.2</td>
</tr>
<tr>
<td>5kg台</td>
<td>11.7±1.9</td>
<td>6.1±2.9</td>
<td>3.2±1.2</td>
</tr>
<tr>
<td>6kg台</td>
<td>10.0±2.2</td>
<td>9.1±2.1</td>
<td>3.5±0.6</td>
</tr>
</tbody>
</table>

TP値は5.8±0.6 g/dlで、平均値は3.7±0.3 g/dlで、後者は3.2±0.4 g/dlであった。当院の TP値の安全基準は3 g/dlを前後としている。体重の低い症例はタンパク製剤を用いることで対策をとっている。表3に体外循環中の経過を示す。最長体外循環時間は5.11 kgのフォローパイント症を合併した完全型心内膜欠損症の193分、最長大動脈遮断時間は同症例の144分であった。

表4にICU帰室後の経過を示す。いずれもICUにて早期に入工呼吸器から離脱し、長期間ICUに滞在することもなかった。

V. 考察

この小児高心肺システム以前の、当院の人工心肺の最低充填量は370mℓで、同種心肺腹用体外循環の限界は心房中隔欠損症や心室中隔欠損症などの症例やHct値が高い5kg以上であった。そのときの最低Hct値11〜12%を当院の安全基準とし、体外循環初期のHct値が15%以上と予測されれば無輸血を目標とした。

このシステムにより充填量の削減でき、そしてECUM回路を改良することで血液希釈を軽減させた。また、充填血液および体外循環中にアルプミンやヒドロキシエチルデンプンを使用することで、輸血浸透圧を維持することに努めた。技術的には体外循環中のリザーセーレベルを可能な限り低く一定に保つ(ECUMにて調節)などして、血液希釈が完済しないようにした。このことにより心内膜床欠損症や肺内動脈圧値異常症などの、比較的体外循環時間が長いため症例やある程度Hct値が低い症例、または軽症ならば3kg台でも同種血を使用しない開胸術が可能になった。

しかし、決して無輸血にこだわるわけではなく、術前の状態によっては体重が多い症例でも輸血充填をしたり、また無輸血を目標としたが、途中で無理と判断したならば即座に血液を使用している。

以上から、同種心肺の充填量を減らすだけでなく、人工心肺の充填構造や体外循環方法なども工夫していくことが重要である。

VI. 結論

充填量230mℓ前後の小児用小型人工心肺システムを用いて、71例に体外循環を行い、42例に対し同種心肺使用体外循環が可能であった。また、このシステムにより、4kg以下の乳児の同種心肺使用開胸術が可能となった。

●参考文献

1）石川根明浩，曾根慎一，大塚勝哉，ほか：乳児無輸血体外循環の検討 体外循環技術，22(2)：51–53，1996