改良型ヘモクリオン Jr II カートリッジと
従来型ヘモクリオン Jr II カートリッジの比較

杉浦 裕之 山田 敬士 藤田 誠 中村 智裕 東 和美 小木 曉光子 新居 優貴

【要旨】人工心肺膜を用いた開心手術外循環中の抗凝固剤は、一般にヘパリンが用いられ、この指標
に活性化凝固時間（ACT）の測定がある。今回、改良されたヘモクリオン Jr II カートリッジを使用する
機会を得たので従来型に加え、院内で使用しているヘモクリオン 401 と比較検討した。ヘモクリオン Jr
II の改良型・従来型のカートリッジは ACT+、ヘモクリオン 401 のテストチューブは FTCA 510 を使
用して測定した。改良型の測定値は、従来型と比較してほとんど変化がなかった。FTCA 510 と比
較して低値を示した。改良型、従来型、FTCA 510 の 3 者には高い相間関係が見られた。

Key words：改良型 ACT+，従来型 ACT+，FTCA 510，ACT

Ⅰ．はじめに

近年、人工心肺・人工透析・PCPS・新生児 ECMO など、様々な外循環が行われているが、外循環
を行ううえで血栓形成など重大な副作用を防止するため、抗凝固剤の投与は欠かせないものになっ
ている。この抗凝固剤として、今日広く用いられているもの一つとしてヘパリンがある。この抗凝固能の
指標として一般に広く用いられているもの、活性化凝固時間（以下、ACT）の測定がある。

多くの施設では人工心肺を用いた開心手術外循環
における抗凝固剤としてヘパリンを用いており、そ
のコントロールについては、ACT を定期的に測定し、400～600 秒に維持することが望ましいとされて
いる。従来から使用されているヘモクリオン Jr II の
ACT+カートリッジは、ヘモクリオン FTCA 510 の
測定値が延長した場合、測定値の差にばらつきがあ
るとの報告があり、今回、更に新しく改良されたカ
ートリッジを使用する機会を得たので、従来のカー
トリッジとヘモクリオン 401（FTCA 510）を比較検討
した。

Ⅱ．対象および方法

1．対象

2000 年 9 月より行った開心術症例のうち、冠動脈
バイパス術（CABG）8 症例、男性 7 名、女性 1 名、
平均年齢 60.8 歳であった（表 1）。　

2．方法

測定は、同一時刻に各規定量を採血し、まずやく
各測定剤に振り分けた。測定に使用したテストチュ
ーブとカートリッジの種類および 1 回の採血量は、
ヘモクリオン 401（FTCA 510）が 2.0 ml、ヘモクリオン
Jr II（従来型、改良型 ACT+カートリッジ）が 0.1

<table>
<thead>
<tr>
<th>表 1 症例内訳</th>
</tr>
</thead>
<tbody>
<tr>
<td>年齢(歳)</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>59</td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>66</td>
</tr>
<tr>
<td>53</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60.875</td>
</tr>
</tbody>
</table>

体外循環技術 Vol.29 No.1
mℓ（実際の使用量は0.05 mℓ），血液ガス分析用に0.5 mℓの合計2.7 mℓを採血した。

採血間隔はヘパリン投与前，投与後，体外循環開始5分後，以後30分ごと，硫酸プロタミン投与後に行った。採血部位は体外循環施行中が動脈血採血ポート。それ以外は麻酔科より患者の動脈圧ラインから行った。

ヘパリンは体外循環開始前に麻酔科より300 IU/kg，人工心肺回路充填液に2,000 IU（2 mℓ）投与した。

ACTは従来当院で使用しているヘモクロン401による測定値を基準とし，ACTの時間ごとの推移と相関関係を調べた。

III. 結果

ヘパリン投与前，投与後，開始5分後，以後30分ごと，プロタミン投与後のそれぞれの平均値で，改良型は，117，499，469，443，437，437，407，421，381，364，113秒，従来型は，117，504，463，443，436，421，399，397，389，365，108秒，FTCA 510は，136，566，607，504，505，506，444，508，468，410，124秒であった（図1）。図1より今回改良されたカートリッジは，FTCA 510に比べACTは50〜90秒程度低値を示した。従来型と比べ，高値を示しても10秒〜30秒程度で，ほとんど変化が見られなかった。

改良型と従来型の測定値（n=68）では，y=0.985x+1.952，r=0.984（p<0.001），改良型とFTCA 510の測定値（n=68）では，y=0.674x+77.1，r=0.899（p<0.001），従来型とFTCA 510の測定値（n=68）では，y=0.670x+75.5，r=0.892（p<0.001）で，改良型，従来型，FTCA 510との間に相関関係がみられた（図2，3，4）。

IV. 考察

ヘモクロンJr IIの測定値は，FTCA 510のACTに換算して表示される。しかし，FTCA 510のACTが高度に延長した場合，ACT＋カートリッジがかな
図3 改良型とFTCA510の相関

図4 従来型とFTCA510の相関

より低値を示し、両者の測定値にばらつきがあるということを、ヘモクロンJr IIのACT＋カートリッジが改良されたとメーカーには報告を受けていたが、今回当院で測定した結果では、改良型の測定値は従来のものと変化はなかった。

改良型、従来型、FTCA510の3者は高い相関が見られ、有意差がなかった。

ACTの測定値よりFTCA510の値は、変動が大きくばらつきがあるのに対して、改良型、従来型ACT＋カートリッジの値は変動が小さかった。これは、ヘモクロンJr IIが検体を測定部へ自動的に吸引され活性化剤と混和されるため、ヘモクロン401のように測定者による検体量のばらつき、活性化剤との混和の仕方というような人為的誤差が少ないなどということが考えられる。

改良型は、従来型と同様に検体量が非常に少量のため、小児無輪血体外循環に有用であると考えられる。

V. 結語

①今回改良型の測定値は従来型とほとんど変わらなかった。
②改良型、従来型の測定値は、FTCA510と高い相関関係が見られた。

参考文献
1) 赤池 賢, 玉城 聡, 松田 聡, ほか: ヘモクロン401とヘモクロンJr IIによる活性化血液凝固時間の比較検討、体外循環技術、28(2): 61〜62、2001。
2) 和田英喜, 西分和也, 新田功男, ほか: 血液凝固計ヘモクロンJr IIの使用経験、体外循環技術、28(1): 13〜15、2001。