

α-stat と pH-stat による超低温選択的
脳灌流時の脳内酸素飽和度の検討

開 正宏 山鹿 章 蜂須賀章友 淺水大輔
萩原啓明 伊藤敏明 宮田完志
服部敏之

要旨 低体温法は脳保護の最も中心的な手段であるが、低体温体外循環中の pH や PaCO₂ 管理は長年にわたって議論されており、統一の見解には至っていない。今回、超低温による選択的脳灌流 (SCP) 時の脳内酸素飽和度 (rSO₂) を、α-stat と pH-stat で比較検討した。その結果、rSO₂ は両群ともに有意差を認めず冷却時に上昇し復温時に下降した。rSO₂ の群間比較では、流量規定で SCP を施行した間には、α群と pH群で有意差は認められなかった。pH群は、超低温で SCP を施行していない体循環時に、rSO₂ に有意に高値を示した。pH-statはα-statに比して脳血流量が増大するため、圧規定時には脳動脈の可能性も懸念されるが、rSO₂ は高値を示し脳組織代謝に有利であることを示唆された。

索引用語：α-stat, pH-stat, SCP, rSO₂, 低体温

Comparison of regional oxygen saturation between alpha-stat and pH-stat management during hypothermic selective cerebral perfusion in arch aneurysm surgery.
Masahiro Hiraki, Akira Yamaga, Akitomo Hachisuka, Daisuke Shimizu, Yoshiaki Hagiwara1), Toshiaki Ito1), Kanji Miyata2), Toshiyuki Hattori
Key words: α-stat, pH-stat, Selective Cerebral Perfusion, Regional Oxygen Saturation, Hypothermia

I. はじめに
大動脈解離や大動脈瘤など胸部大動脈疾患の外科治療では、体外循環が一般的な開腹手術とは大きく異なり、中枢神経系や特に脳保護のため脳分離体外循環法が必要になる。その方法論は様々であるが、低温法は脳保護の最も中心的な手段であるが、低温体外循環中の pH や PaCO₂ 管理は長年にわたって α-stat と pH-stat のどちらが有利であるか議論されてきたが統一の見解には至っていない。今回、超低温による選択的脳灌流（selective cerebral perfusion）前に SCP 時の脳内酸素飽和度（regional cerebral oxygen saturation; 以下の rSO₂）を、α-stat と pH-stat で比較検討したので報告する。

II. 対象
2006年1月から2007年2月までに14ヶ月間に胸部大動脈人工血管置換術を施行した65例中、超低温にて SCP を行った51例を randomized prospective に α-stat と pH-stat に割り付けた。そのうち rSO₂ の値が術先時に40%未満の異常値症例と左右差が10%以上の症例を除いた α-stat 21例（以下、α群）と pH-stat 21例（以下、pH群）を対象とした。

III. 方法
1. 体外循環方法
全例において落差脱血でローラポンプによる送血を行い、送血流量は灌流時 2.5L/min・m²、復温時 2.5 ～ 3.0L/min・m² とした。送血部位は術前情報や術中直接大動脈エコーの所見から、大動脈解離症例では大腿動脈、異性大動脈瘤症例では上行大動脈を第一選択とした。条件により右側動脈の単独使用または併用を行い、復温時は全例で人工血管側枝からの送血とした。体外循環開始後、体血圧や rSO₂ などに異常をきたさなければ送血圧と直腸温度で10℃差前後となるように冷却し、冷却時間 20 分
以上かつ咽喉温23℃以下の条件でD-マニトール60g300mL投与後に咽喉停止した。

2. SCP方法
SCP用Y字型分枝回路を用いてローラーポンプ1基により、肺動脈または右肢動脈と左肺動脈に灌流流15℃、灌流流量7〜8ml/kg/minの流量設定でSCPを行った。SCPは2分枝の送血とし、元工医科工業試験メガベルーンカテーテル15Frと12Frをそれぞれ肺動脈と左肺動脈に挿入、右肢動脈使用時にはMedtronic社製DLPワンピースカニューレ16Frまたは18Frを用いた。また、左肺動脈動脈はEdwards Lifesciences社製フォアティーンカテーテル5Frにて閉塞した（図1）。

3. pH管理方法
α-statとpH-statともにpH7.40を目標とせず、連続的血液ガス分析装置テレマ社製CDI-5000を用いてPaCO₂を40mmHgにすることに人工肺ガス流量CO₂吹送量を調整した。

4. 比較方法
rSO₂の測定にはEdwards Lifesciences社製INVOSS1000を用いて、左右前腕部の平均値を算出した。体外循環開始直前、開始10分後、体循環停止直前、SCP開始5分後、SCP終了直前、復温開始5分後、体外循環離脱直前のrSO₂をα群とpH群で比較検討した。統計学的検定は段階変動の有意差検定にRepeated measures ANOVAを行い、各時点での差異有意差検定にはUnpaired t-testを用いた。それぞれp<0.05をもって有意差ありとした。

IV. 結果
患者背景と体外灌流およびSCPの条件すべてに有意差は認められなかった（表1、2）。
rSO₂の群間変動は分散分析の結果から両群ともに有意差を認め冷却時に上昇し、復温時に下降した（図2）。
rSO₂の群間比較ではt-testの結果から低温時でSCPを施行していない体循環停止直前と復温開始5分後時に有意差を認めて、pH群がα群に比して高い値を示した（図3）。

V. 考察
中低温針麻の麻酔には意識レベルや瞳孔、反射などの神経副作用が重要であるが、術中麻酔の下では評価する別の手段が必要であり、それに伴う脳損傷性や連続性が理想的で術後損失をもとに

表1 患者背景

<table>
<thead>
<tr>
<th>項目</th>
<th>α群</th>
<th>pH群</th>
</tr>
</thead>
<tbody>
<tr>
<td>性別</td>
<td>21例</td>
<td>21例</td>
</tr>
<tr>
<td>年齢（歳）</td>
<td>66±12.2</td>
<td>67.5±12.7</td>
</tr>
<tr>
<td>身長（cm）</td>
<td>154.8±10.3</td>
<td>154.8±10.3</td>
</tr>
<tr>
<td>体重（kg）</td>
<td>62.6±12.7</td>
<td>64.8±16.6</td>
</tr>
<tr>
<td>BSA（m²）</td>
<td>1.65±0.20</td>
<td>1.60±0.22</td>
</tr>
</tbody>
</table>

mean±SD

表2 体外灌流およびSCPの条件

<table>
<thead>
<tr>
<th>項目</th>
<th>α群</th>
<th>pH群</th>
</tr>
</thead>
<tbody>
<tr>
<td>体外循環時間（min）</td>
<td>177.3±32.6</td>
<td>132.5±25.7</td>
</tr>
<tr>
<td>心停止時間（min）</td>
<td>122.5±25.7</td>
<td>117.3±32.6</td>
</tr>
<tr>
<td>SCP停止時間（min）</td>
<td>95.5±10.0</td>
<td>84.7±11.4</td>
</tr>
<tr>
<td>SCP出血量</td>
<td>119.2±10.2</td>
<td>100.5±11.2</td>
</tr>
<tr>
<td>SCP温度（ml/min）</td>
<td>455.2±74.0</td>
<td>443.3±78.5</td>
</tr>
<tr>
<td>平均あたりのSCP温度（ml/kg/min）</td>
<td>7.8±0.6</td>
<td>7.8±0.8</td>
</tr>
<tr>
<td>冷却時間（min）</td>
<td>25.4±5.6</td>
<td>27.5±5.6</td>
</tr>
<tr>
<td>最低臨床温（℃）</td>
<td>25.0±2.1</td>
<td>24.4±2.7</td>
</tr>
<tr>
<td>最低rSO₂（ml/kg/min）</td>
<td>5.0±1.3</td>
<td>5.7±1.7</td>
</tr>
</tbody>
</table>

mean±SD

体外灌流技術 Vol.35 No.2 151
SCP 時の脳虚血モニターとして、近赤外線分光法により脳局所の酸素飽和度を測定する rSO₂や脳全体の循環代謝バランスを反映する内類性脈酸素飽和度（jugular vein oxygen saturation: 以下、SjO₂）は、中枢大脳動脈血流を測定する全類性脈吸音波ドプラ法（transcranial Doppler sonography: 以下、TCD）と解釈される。TCD は測定そのものが難しい簡便性に欠け、SjO₂は侵襲性であり左右片方の虚血などに診断感度が低い[1, 3, 4]。SCP 時の rSO₂の有用性は多々報告されているが、1, 2, 5, 6, 7, 8, 9, 10。本検討では胸部大動脈人工血管置換術が対象であり、自主手術が約 7 割を占めるため、簡便性を理由に rSO₂を脳虚血のモニターとし、rSO₂の測定機種は現在 5 種が市販されており、測定原理が若干異なる[5, 31]。そのため、各機種で測定値が測定名称の違いがある[4, 12-18]が、結果的にどの機種も rSO₂を変化させる要因として、脳血流、動脈血の酸素含量と Hb 値、脳組織内での酸素消費、静脈留滞などの変動が挙げられる[2, 3]。

rSO₂は SjO₂と Hb 値が一定であれば脳酸素代謝と脳血流の比によってほぼ対応するため[19, 20]、SCP 時には脳血流変動が rSO₂変化の大きな要因といえます。rSO₂測定は脳への酸素供給状態の変化に対しても敏敏である[2, 6]。当施設のような Y 字型分岐回路を用いたローパンプ 1 基による SCP では、側回路街区の酸素欠乏や体外循環開始直後の mal-perfusion 発見[2, 14]といった重篤な事態を把握できるモニタリングとして必要不可欠と考えます。

本検討から、α 群が SCP 時に rSO₂が冷却時に上昇し復温時に下降した。これは rSO₂が脳内酸素消費の変動により影響され、超低温時には脳内虚血の酸素消費低下が影響が少なかった結果と考えられます。群間比較では rSO₂が低温時で SCP を施行していない体循環停止直前と復温開始 5 分後時に pH 群が α 群に比して高い値を示した。当施設は流量規定による SCP を行っているため、rSO₂変動の要因である脳血流量が、α 群においては SjO₂が低かったことから、SCP 開始 5 分後と SCP 終了直前是有意差がなく、体循環停止直前時と復温開始 5 分後時は低温時であるために α-stat と pH-stat の差が大きく表れ、脳血管抵抗の違いで脳血流量が異なることにより α 群と PH 群で有意差があったと考察する。

低温時の PH 管理は長年にわたり議論されてきたが現在も統一の見解はなく、軽度低温体外人工循環の術前管理は PH-stat が基本的であったが、現在では Autoregulation の消失等術後認知障害の確率が著しくっていられている。成人では α-stat による管理が一般的であり、心肺保護の意味でも有利とされている。一方、新生児・乳児では pH-stat の方が心拍出量が多く、脳保護も良かったとの報告が多い[2, 5, 15, 19]。

脳保護に関する PH 管理の議論の観点は脳血管抵抗の CO₂反応性と Autoregulation の問題であると考える。CO₂が脳循環の調節機能の中でも最も重要な因子であり、体外循環中も維持され、CO₂上昇または負荷により脳血流は増加する[20]。そのために PH-stat では α-stat に比してより均一な脳冷却が可能で脳保護効果が高いといわれるが、その反面で脳血流過剰により debris などの病变子が脳に飛び移りを増加させる可能性が高くなる[21]。脳血流の自動調節である Autoregulation は外因性、内因性の要素により、メカニズムとして筋原性調節や代謝性調節に様々な因子が関与調節が行われていると考えられており、それは 15～30 秒で完成する[22]。一般的に PH-stat は脳血流と代謝のバランスを崩し、Autoregulation を失わせ[6]、低温でも脳血流の自動調節は働かなくなる[23]とされる。脳血流は二酸化炭素反応として PaCO₂が 20 〜80mmHg の範囲
内で増減でき、80mmHgを超えると脳血管は最大に拡張するため、それ以上の増加に対しても脳血管の増加はなく、20mmHg以下で脳血流はそれ以下にならない18, 20)。

超低温下では図4に示すように、仮に血液温度が22℃の時、α-statでPaCO₂を40mmHgにコントロールすればpH-stat換算ではPaCO₂が20mmHg以下で脳血管は最小に収縮しており、逆にpH-statで40mmHgにコントロールすればα-stat換算ではPaCO₂が80mmHg以上となり、脳血管は最大に拡張していることになる。本検討でも理論上の傾向がrSO₂の結果に示され、坂本ら19)による乳児中等度併用体外循環時の報告でもpH-stat strategyはα-stat strategyと比べて低体温下では脳血流の増加が期待でき、α-statのほうが脳血流が有意に低下し、Hct 値が低く酸素運搬能が低下している状態では顕著になると述べている。また、黒崎ら20)はSCPを常温もしくは軽度低体温下で行い有用性を報告しているが、その場合はα-statとpH-statの差はほぼ無視できると述べている。しかし、現状では大多数の施設が中等度以下低温でα-statを採用していると考えられる。その理由としてpH-statではCO₂ガスを添加しなければならない煩雑性と山崎ら21)も述べているが、CDI-500などの連続的血液ガス分析装置を用いないと容易にコントロールできないためと考える。

脳分離体外循環の方法はSCPと逆行性脳灌流（retrorgrade cerebral perfusion: 以下、RCP）の違いや送血部位、カニューレの挿入法、灌流量、灌流圧、灌流温度など施設により異なる22）。同施設内でも脳分離体外循環法は刻々と変化し、当施設では1990年頃より動脈リザーバーを用いたローラポンプ3基によるSCPを経験し、1998年9月より手術手技がarch first techniqueになるに伴いRCPに変更した。そして2005年3月よりY字型分枝回路を用いたローラポンプ1基によるSCPを行っている。この間にも温度条件などは幾度となく変更しており、学術的なデータを同条件下で長期間、多変量を得るのは困難である。本検討ではpH-statはα-statに比べて低温時の圧規定時が高いrSO₂を示して優位性を認めたが、脳血流増大による基準や術後の高次脳機能障害などの検討は緊急症例が約7割を占めて大半は急性大動脈解離であることから評価していなかったため、一定の記載は述べられない。最後にpH-statの長所としては、冷却後に循環停止してからSCPカニューレ挿入を行う1、2分間にrSO₂は低下するが、pH群は循環停止直前にrSO₂が高価であるため循環停止中の低下幅に余裕がある印象を受けた。

VI. 結 論
① 今回、超低温によるSCP時のrSO₂をα-statとpH-statで比較検討した。
② 流量規定でSCPを施行した間には、α群とpH群でrSO₂において有意差は認められなかった。
③ 超低温でSCPを施行していない体循環時にpH群はα群に比して、rSO₂が有意に高価を示した。
④ pH-statはα-statに比して脳血流量が増大するため、圧規定時には障害の可能性も懸念されるが、rSO₂は高価を示し、脳組織代謝に有利であると示唆された。

● 参考文献
2) 小柳 仁，北村篤一郎，安井久義，ほか 編：心臓血管外科手術書. 第1版，東京，先端医療技術研究所，2004. p.3-9, 327-331, 394-400.
3) 相馬一男 編：クリティカルケアに必要なモニタリング Q & A. 救急・集中治療, 18(3・4), 東京, 総合医学社，2006. p.393-400, 401-408.
5) 原田秀樹，金子真也，加納龍彦，ほか：脳分離体外循環時のSjO₂, 両側rSO₂同時測定の臨床的意義. 臨床治療, 8(11):1269-1270, 1996.
16) 守谷 俊，丹正勝久，林 成之：脳低温療法におけるモニタリングの応用．救急・集中治療, 17(4); 403-409, 2005.
17) 外 須美夫：心臓手術後に発生する脳障害の成因と危険因子．臨床麻酔, 26(10); 1479-1488, 2002.
18) 垣花泰之：心臓手術後脳障害に対する脳指向型管理法．日集中医誌, 14(1); 27-35, 2007.
20) 中尾憲一，新宮 興：脳血流の自動調節と麻酔薬．臨床麻酔, 28(9); 1464-1470, 2004.
22) 山崎隆文，齋藤 建，熊井良一，ほか：大動脈手術の体外循環法．体外循環技術, 33(2); 143-146, 2006.

[本論文は、第33回日本体外循環技術医学会
大会にて報告した。]