各種ラインフィルタ・パルプトラップの
気泡捕捉能に関する検証
岩岡 健 1) 川上千乃 1) 宮下誠 2)

要旨：今回は、市販されている成人用ラインフィルター・パルプトラップの気泡捕捉実験を行う機会を得た。実験は牛血を用い、マクロパルプとマイクロパルプを人為的に作り出し対象検体へ送り込むものとした。評価検体前後には気泡検知器を設置し評価検体の気泡捕捉能を測定した。その際、気泡に対する対策としてベンポートの開放が有効であるかの実験も行った。結果、ラインフィルター4種、パルプトラップ1種のいずれの評価検体もベンポートの開閉に関係なく40μm以上の気泡が検出された。静脈血リザーバより混入した気泡は人工肺を通過する際に粉砕され、それらの微小化した気泡を捕捉することは困難であると言える。人工肺・ラインフィルターに気泡を送り込まないためにもレベルセンサ・パルプトラップなどの安全装置の装着は必須と考える。

索引用語：微小気泡、牛血、ベンポート、気泡捕捉能

Examination of Air handling performance: Various kinds of Arterial filter, and bubble trap
Takeru Iwaoka1), Yukino Kawakami1), Makoto Miyanoshita1)
Key words: Micro bubble - bovine blood - Vent port - Air handling performance

I．緒 言
近年、様々な低充填量ラインフィルターが市販されているが、低充填量化による気泡捕捉能の低下が不安視される。これまで低充填量ラインフィルターに対し、気泡捕捉機能の検討は行われてきただけ、それからの報告は水系の実験が多く良好な結果を得られたとの報告1-3も多い。しかし、臨床においては粘性のある血液の環境下であり、水系実験とは条件が大きく異なる。そして、混入した気泡は人工肺を通過する際に粉砕され微小化されているものと考えた。これらの条件を踏まえラインフィルター（以下、AF）とパルプトラップ（以下、BT）の気泡捕捉実験を行った。また、気泡捕捉能低下に対する対策案としてベンポート開放の効果を検証した。

<table>
<thead>
<tr>
<th>表1 評価検体データ表覧</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大血流量(L/min)</td>
</tr>
<tr>
<td>JMS FT-50</td>
</tr>
<tr>
<td>TERMO CX-BT15</td>
</tr>
<tr>
<td>TERMO CX-AF125X</td>
</tr>
<tr>
<td>TERMO AF2040GOLD</td>
</tr>
<tr>
<td>Medtronic AFFINITY CB351</td>
</tr>
</tbody>
</table>

注1：最大血流量時の圧力損失
（表中の値はクログ数）

II．対 象
AFは、JMS社製FT-50（以下、FT-50）、テルモ社製CX-AF125X（以下、CX-AF125X）、テルモ社製AF2040GOLD、メドトロン社製AFFINITY CB351（以下、AFFINITY CB351）を、BTはテルモ社製BT-15（以下、CX-BT15）の計5種を対象とした。なお、形状とカテゴリデータは図1と表1に示した。

III．方 法
実験回路を図2に示す。リザーバからローラーポンプを経て遠心ポンプを通してAFおよびBTへ送る構成とした。遠心ポンプは気泡が混入した場合、微細化される。そこで、気泡を粉砕する目的に遠心ポンプを組み込んだ。流量をローラーポンプによって規定する理由としては遠心ポンプでは気泡を巻き込んだ場合に流量が低下してしまわない流量を保つことからである。試験液は牛血（Ht:35%、25℃）を用い、気泡検知器はHATTLELAND社製CMD20を使用し、評価検体の入口側と出口側に設置して

1) 熊本赤十字病院 臨床工学課
岩岡 健（Takeru Iwaoka）
〒861-8525 熊本県熊本市東山2-1-1
Department of Clinical Engineering, Kumamoto red cross hospital
2-1-1, Nagaminemename, Kumamoto-cho, Kumamoto
861-8525, Japan

2) 鹿児島医療センター 心臓血管外科

[論文受領日：2007年11月23日 採択日：2008年10月1日]
計測した。実験条件は、血流量 5.0L/min、出口側回路内圧（200mmHg）を一定にし、遠心ポンプを2000rpmと0rpm、ペントボート血流量は、0L/min、0.5L/min、1.0L/minとした。気泡は遠心ポンプ直前よりシリンジで10mLを手動注入し、計測はそれぞれ3回ずつ行った。

IV. 結果
1. ペントボート流量0L/minで遠心ポンプ0rpm - 2,000rpmの比較（図3、4）
 AF2040GOLD、CX-AF125X、CX-BT15に関しては0rpmと2,000rpmで漏出気泡サイズに大きな差は見られない。FT-50ではrpmで実測値80μm、平均値80μm、平均値38μm、2,000rpmで実測値80μm、平均値60μmであった。

2. 遠心ポンプ2,000rpmでペント流量0L/min 0.5L/min 1.0L/minでの各対象の比較
1)CX-BT15（図5左）
 実測値90μm、平均値90μmでペント流量の変化による漏出気泡のサイズに変化はなかった。
2)CX-AF125X（図5右・図6右）
 実測値60μm、平均値40μmでペント流量の変化による漏出気泡のサイズに変化はなかった。
3)FT-50（図6左）
 ペント流量0L/min時、実測値80μm、平均値60μm。ペント流量0.5L/min・1.0L/min時、実測値80μm、平均値50μmであった。
4) AFFINITY CB351（図7左）

図1 評価検体
図2 実験回路構成
図3 動脈フィルター（結果）
実測値 60 \(\mu \text{m} \)、平均値 40 \(\mu \text{m} \) でベント流量の変化による漏出気泡のサイズに変化なかった。
5) AF2040GOLD（図 7 右）
実測値 60 \(\mu \text{m} \)、平均値 40 \(\mu \text{m} \) でベント流量の変化による漏出気泡のサイズに変化なし。

図 4 パブルトラップ（結果）

図 5 ベントポート開放時結果（CX-BT15 CX-AF125X）

V. 考察
気泡捕捉能は、対象とした 5 検体でベントポートの開閉に関わらず臨床上問題とされている4) 40 \(\mu \text{m} \)に達するものであり、CX-BT15に関しては 90 \(\mu \text{m} \) に近くなる。CX-AF125Xとハウジングは同形状でありながら気泡のサイズに差が生じたのは評価検体の 40 \(\mu \text{m} \) と 170 \(\mu \text{m} \) のメッシュサイズの違いによるもの

図 6 ベントポート開放時結果（FT-50 CX-AF125X）

図 7 ベントポート開放時結果
(AFFINITY CB351 AF2040GOLD)
のと考えられる。

AF間での比較では概に容量に比例し気泡捕捉能が高いとも言えない。ただ、ハウジング上部にチャンバーとなるスペースを持つ形状のものは比較的、気泡捕捉は高いのではないかと考えられる。

牛血の粘性において微小気泡の浮力では旋回流にて生じる遠心力で分離できず血流に取り込まれたものと考えられる。いずれもエア混入時の気泡捕捉を目的としては十分な能力を有しているとは言えないと考えられる。

VI. 結 論

いずれのAF、BTもベントポートの開閉に関わらず40μm以上の気泡を放出する可能性がある。人工肺・ラインフィルタへ気泡を送り込むリスクを軽減するためにもレベルセンサー・バブルセンサーなどの安全装置の装着は必須と考える。

●参考文献
1) 菅原誠一、千葉二三夫、河原繁輝、ほか：新しい動脈フィルタの実験的検討。体外循環技術，34(1)：10-12, 2007。
2) 佐藤正展、古平 実、河原繁輝、ほか：低充填量動脈フィルタの水系実験による検討。体外循環技術，34(1)：35-38, 2007。
3) 株式会社ジェイ・エム・エス：高流量用ラインフィルタ「フィルティア FT-50」。体外循環技術，33(4)：478-481, 2006。
4) 川野宏明：動脈ラインフィルタの有用性。Clinical Engineering, 17(10)；1054-1060, 2006。

本論文は、第33回日本体外循環技術医学会大会にて報告した。