Early maturation in males of the giant water bug, *Appasus major* Esaki (Heteroptera: Belostomatidae)

Shin-ya Ohba1) and Pablo Perez Goodwyn2)

1) Laboratory of Insect Ecology, Graduate School of Environmental Science, Okayama University, Okayama 700-8530, Japan
2) Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan

(Received: November 27, 2008; Accepted: January 31, 2009)

Previous studies have shown that the newly emerged adults of the giant water bug, *Appasus* (*Diplonychus*) *major* of the new generation males in their natural habitat before winter. Overwintering

The giant water bug, *Appasus major* Esaki, inhabits shallow waters in mountainous regions, including areas dominated by traditional rice paddies (Ichikawa, 1996). Populations of this species are declining in many regions in Japan. Because of the decline, *A. major* is included in the local edition of the red data list in 10 of 47 prefectures (Association of Wildlife Research & EnVision, 2007). Despite the decline in population numbers, little is known regarding the life cycle of this species.

Some studies (Ichikawa, 1996; Mukai and Ishii, 2007) show that *A. major* adults overwinter and reproduce in June and July. The newly emerged adults then appear from late July onwards. *Appasus major* prefers cooler waters than the congeneric species, *A. japonicus* Vuillefroy (Okada and Nakasuji, 1993). Previous studies suggest that *A. major* has a strict univoltine life cycle in their natural habitat (Ichikawa, 1989, 1993; Mukai and Ishii, 2007). Conversely, *A. japonicus* is able to produce 1-2 generations in a single year (Okada and Nakasuji, 1993). The difference may be related to environmental factors such as temperature. *Appasus japonicus* lives in warmer water which is likely to increase the rate of development whereas *A. major* live in cooler water which may lengthen the developmental period (Okada and Nakasuji 1993). In the present study, a field work using mark and recapture censuses was carried out in a warmer wetland than in previous studies (Okada and Nakasuji, 1993; Ichikawa, 1993), in order to reveal the life cycle of *A. major* under different thermal conditions.

Materials and Methods

The study was conducted in a fallow rice field in Misaki (34°58’ N, 133°58’ E), Okayama prefecture between April and October, 2006. We measured the seasonal abundance of *A. major* by conducting field surveys. We conducted the surveys in a 198 m² area of a ditch located along the ridge of the fallow rice field. The ditch received direct sunshine during the day, and was filled with water (5-15 cm depth) throughout the study period.

We captured adults using a D-frame dipnet (28 cm
Shin-ya Ohba and Pablo Perez Goodwyn

Each adult was individually numbered on the thorax using paint markers (Paint Marker®, Mitsubishi) and were subsequently released into the ditch. We recorded the individual number, age (overwintered or new generation adults), sex, and the numbers of eggs on the back of the males prior to release. New generation adults were easily recognized by their clean wings and/or soft body. We then surveyed the study site on a weekly basis throughout the study period, twenty six times in total. In addition, we measured water temperature during each survey.

We used the Jolly-Seber method (Jolly, 1965; Seber, 1965) to estimate the number of adults present during each survey. To evaluate the relative abundance of A. major nymphs, the D-frame dipnet was swept 20 times along a 50 cm path across the water surface. This procedure was repeated 3 times. We counted the number of nymphs from each instar. Data from published literature was used to compare water temperature of the present study with other study sites (Okada and Nakasuji, 1993; Ichikawa, 1993).

We compared the number of eggs carried by overwintered and new generation males using Student's t-test. Water temperature was compared using the Wilcoxon signed rank test, with month as a replicate. Before analysis, monthly mean water temperature was calculated using daily data for each month. Comparisons in which \(P < 0.05\) were considered statistically significant. All statistical tests were conducted using JMP software (JMP version 7.0, SAS Institute, 2007).

Results and Discussion

Overwintered adults were most abundant in April (Fig. 1). Encumbered males appeared at the study site between April and August. Nymphs appeared from mid May onwards, and new generation adults appeared between July and October. Encumbered new generation males appeared between July and August (new generation males/total males: 1/31 for July, 8/26 for August, Fig. 2). All encumbered new generation males had emerged in July. Overwintered males carried significantly more eggs than new generation males (overwintered males: 77.13 ± 10.94 (mean ± SE), 31-115 (range); new generation males: 47.71 ± 3.09, 31-56; t-test: \(df = 13, t = 2.431, P = 0.030\)). We observed egg shells among the clutch of two new generation males in August, suggesting that hatching was successful. The water temperature was significantly higher at the present study site than at study sites in previously published research (Table 1).

Appiasus major tended to develop more rapidly in the present study than in previous studies (Okada and Nakasuji, 1993; Mukai and Ishii, 2007). Each instar was observed about 1 month earlier than in the previous

Fig. 1 Abundance and phenology of Appiasus major. The data represent the mean and variance (calculated by Jolly-Seber method) or standard error for adults and nymphs, respectively. The overwintered (black circles) and newly emerged (white circles) adults are shown separately.
Early maturation in male *App dus major* studies. We also observed egg masses on new generation males (Fig. 2). Because *A. major* males attempt to copulate before receiving eggs to ascertain paternity, these new generation males were likely reproductively mature (Ichikawa, 1989). Moreover, the presence of hatched egg shells indicates that the eggs were viable. However, we cannot rule out the possibility that the eggs were fertilized by sperm from another male stored in the females spermatheca (Smith, 1979a).

Our observations of the encumbered new generation males before winter differ from previous reports, which documented univoltinism in this species (Ichikawa, 1989, 1993; Okada and Nakasuji, 1993; Mukai and Ishii, 2007). We hypothesize that environmental factors are responsible for the difference in the life cycle at this study site. The combination of warm water temperatures and a long-day photoperiod during July likely contribute to the early maturation of new generation males (Table 1). The warm water temperatures appear to hasten growth of the nymphs and favor early emergence of young adults in July. Photoperiod is also likely to play a key role in reproductive success. For example, short-day photoperiods during late summer and autumn induce reproductive diapause in new *Kirkaldyia (Lethocerus) deyrolli* (Belostomatidae) adults (Hasizume and Numata, 1997). Assuming that day-length also plays a role in inducing diapause in *A. major*, the new generation males may have emerged early enough (July) at our study site such that reproduction was not affected by day-length. Conversely, males emerging in August or later, are likely to enter reproductive diapause due to the short-day photoperiod.

New generation males carried significantly fewer eggs than overwintered males. We speculate that this may be because the warm water temperatures in our study site allow for earlier emergence and thus more time for egg laying before diapause.

![Figure 2](image_url) **Fig. 2** Seasonal fluctuation in the abundance of encumbered males.

<table>
<thead>
<tr>
<th>Mean water temperature</th>
<th>Study site</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.6</td>
<td>Misaki, Okayama</td>
<td>Present study</td>
</tr>
<tr>
<td>21.4 *</td>
<td>Western Hyogo</td>
<td>Ichikawa (1993)</td>
</tr>
<tr>
<td>19.0 *</td>
<td>Kanayama, Okayama</td>
<td>Okada and Nakasuji (1993)</td>
</tr>
<tr>
<td>18.1 *</td>
<td>Kuko, Okayama</td>
<td>Okada and Nakasuji (1993)</td>
</tr>
</tbody>
</table>

1) From April to September

* The water temperature in all previous study sites was significantly lower than in Misaki (*P*<0.05, Wilcoxon signed rank test).
may be due to selection for the older males by females (Smith 1979b). Although we were able to document reproduction in young males prior to overwintering, we were not able to determine the reproductive success of young females.

In summary, our results show that environmental conditions can play a role in determining the life cycle of A. major. In warm water and under long day-length photoperiods bivoltinism is likely to be favored. Conversely, it appears that cool water temperatures favor univoltinism. However, further research is needed to determine the fitness of offspring carried by the younger males.

Acknowledgments

We would like to thank Prof. T. Miyatake and Dr. K. Shimizu of Okayama University for their valuable comments. We are grateful to Mr. T. Kojima for providing the Jolly-Seber program. We also thank K. Kato for his kind support with the field surveys.

References
