e-Learning教材における読解促進を目的とした下線引き活動
に対するフィードバック機能の実現とその効果

福永良浩*・平嶋宗**・竹内章*
九州工業大学大学院情報工学研究科*・慶應大学大学院工学研究科**

本研究では、e-Learning教材における読解の促進を目的として、学習者による下線引きを可能にし、かつ、その下線引きを評価してフィードバックを返すことにより、その下線引き活動の更なる促進を図ることを試みている。これらの機能を実装したe-Learning教材を作成し、実際の授業における副教材として用いたところ、下線引きだけを行える機能を提供する教材を利用した学習者群と比較して、フィードバック機能まで提供する教材を利用した学習者群では、(1)教材の利用率が高く、(2)読解にとってより好ましいと思われる下線引き活動が多く見られ、(3)読解に関する確認テストの正答率が高かったという結果が得られた。これらのことから、本研究で実現した下線引きに対するフィードバック機能が、読解を促進する効果を持つことが示唆された。

キーワード：e-Learning, 下線引き, フィードバック, 読解の促進, 学習効果

1. はじめに

インターネットの急速な普及を受けて、現在さまざまな分野でインターネットを利用した教育(e-Learning)が盛んに行われるようになっている（先端学習基盤協議会2003）。e-Learningには様々な形態があるが、現在、企業や学校を中心に実施されている技術習得や資格取得のためのe-Learningの多くは、学習者が教材を読解する段階を中心として構成されている。このような形態のe-Learningは、教材配布の簡便化、学習者の個別ベースに合わせた学習、大まかな進捗状況の把握といった点で有用性が高いといえるが、同時に、その中

心となっている読解段階において、紙ベースの従来の自習と大差ない学習形態になっているという問題が生じている。この読解段階をe-Learningのインタラクティブ性を活かしたものとすることが、本研究の目的となる。

読解の補助としてしばしば行われる行為に、重要な部分に対する「下線引き」がある。これまでの紙ベースの読解における下線引きに関する研究では、教材に下線引きを行うのでは読解を促進する効果があるとされており（魚崎ほか2003）。したがって、e-Learning教材の読解において学習者に下線引きを行えるようにすれば、読解を促進する効果が期待できる。しかしながら、単に学習者に下線を引かせるだけでは、インタラクティブ性を活かしているとはいえない。そこで本研究では、学習者が読解教材に対して下線引きを行うようにするだけでなく、行われた下線引きを評価し、その結果を学習者にフィードバックすることによって、学習者が自分の行った下線引きの妥当性を確認できる仕組みを目指し作出した（FUKUNAGA et al. 2004, 福永ほか2004）。このようなフィードバックは、下線引きをより積極的に、かつ妥当なものとすることを動機付けることとなり、読解の質的向上をもたらすことが期待できる。

以下本研究では、第2章において、本研究の背景として、これまで行われてきた読解における教材への下線引きの効果に関する研究事例を紹介する。第3章に

Vol. 29, No. 3 (2005)
2. 下線引きの効果に関する先行研究

読解における教材への下線引きの形態やその効果に関しては、これまでにも様々な研究結果が報告されている。学習方略としての下線引きは、教授内容の認知的処理を促進するという符号化機能と外部記憶機能として捉えることができると報告されている（Di VESTA and GRAY 1973）。下線引きを符号化機能として考えると、教材の重要だと考える情報を探すプロセス中に役立つと考えられる（GLYN 1978）。MARSHALL（1997）は、実際の大学教科書に含まれた記録属性の事例を調査し、記録属性としては下線、ハイライトマークーや、アスタリスク、星印、矢印などは「目印」として教材の文章や単語などに付与され、さらにその他の「メモ」機能が得られていることを指摘している。これらのメモについては、文章の意味解釈や問題の解答に、マーキングや目印は、教材の重要概念を記録するのに多く用いられることが報告されている。一方、下線引きを外部記憶機能として考えると、下線が引きられたテキストが見直された時にのみ効果をもたらし、下線が引きられたテキストが見えなかった場合には、テキストへの内容理解や再生に対して記憶機能としての効果をもたらさないと考えられ（BLANCHARD and MIKKERSON 1987）。

関（1997）は、学習記憶を対象とした重要概念を矢印、下線、強調文字などのブロントムを用いて強調することで、それらの部分についての理解を促進することを明らかにしている。このブロントムに関しては、教材の重要な部分に下線引きが行われていた下線は、明らかに内容理解を向上させるのに、外れ下線の下線が下線の下線を処理することが報告されている（JOHNSON and WEN 1976）。また、実際に学習者が教科書等を読む際には、自分自身の理解を高めるために、教科書等に下線を引くことが多い。この行為は学習者自身の教科書への内容理解を高めるための効果的な行為であると考えられる。ただし、教材に自発的に下線を引くためには、学習者が教材に重要概念に注意を払い、選択した必要がある。つまり、教材を読む中で、どこが重要概念であるかという探索下での判断と下線を引き、という記録活動は、教材に対する理解の必要とするため、教科書の重要概念を予めブロントムとして強調し受動的に与える以上に、教材への内容理解に効果をもたらすと考えられている（魚野ほか 2000, 2003）。

それらのことから、本研究では、e-Learning 教材への重要概念を付与するための記録属性を意味解釈を明確に下線（下線引き）という項目を採用した。

3. 下線引きに対するフィードバック機能

教材中の重要部分に下線などのマークを施すことは、ごく一般的に行われている行為であり、教材作りの一環として教師が重要と思われる部分に下線引きを行うことは、大きな負担にはならないと考えられる。本研究では、教師が行う教材への下線引きを正解データとして、学習者がその解釈を評価し、その結果をフィードバックする仕組みを実現している。

以下本研究では、教師による下線引きを正解データとした学習者の下線引きの評価、およびそのフィードバックについて述べた後、教師による下線引きを正解データとすることの妥当性の調査について報告する。

3.1. 下線引きの評価

本システムの構成は、図1のようにになっている。まず、教師は提示された教材に対してコンピュータ上で下線引きを行い、システムはそれを正解データとして蓄える。そして、正解データに基づいて、システムは学習者の下線引きを評価し、その評価結果を学習者にフィードバックする。この際、教師による下線引きデータと、学習者による下線引きデータは同じメカニズムで取得される。

日本教育工学会論文誌（Jpn. J. Educ. Technol.）
読解における学習者インターフェースは、図2のようなになっている。この図のように、教科の重要なと思われる部分に下線を引いた上で、保存ボタンを押すと、その学習項目（3.2.1項参照）に対する下線を引き正解データと照合、その結果を「理解指標」としてフィードバックする。一度保存すると一度学習したとカウントされ、保存とフィードバックは学習項目単位で行われる。一度保存した下線を追加・消去することで下線を引いた部分を変更し、再度保存すると、改めてその学習項目単位での下線を引き正解データが再評価され、理解指標を受け取ることができる。
なお、理解指標は、以下の式で用いて計算している。

\[\text{理解指標}(C) \times 100 = \frac{L_c - L_w}{T} \times 100 \]

\(L_c \)：学習者が教師の正解データと同じ文節に下線を引いた文節数
\(L_w \)：学習者が教師の正解データと異なる文節に下線を引いた文節数
\(T \)：教師が予め確認課題（教授目標となる重要概念）の正解データである文節に下線を引いた文節数

この理解指標自体は、学習者の下線引きの全体としての妥当性を示すものであり、下線を引かなかった、下線を引きすぎたりする行為を抑制するような指導として設定されている。本研究でのフィードバックの目的は、下線引きを見直すことを通じたより深い理解を促進することであり、再現率や適合率といった下線の引き方の方向を示唆してしまう指標よりも、本指標のように全体としての妥当性を表すものが適切と考えて用いている。

3.2. 正解データの妥当性

下線引いた正解データをいかにして用いるかは、下線引いたフィードバックを生成する上での重要な課題の一つである。本システムでは、教材作成者の行った下線引いた正解データとしている。このような正解データが妥当性を持つかどうかについての調査を行った。この調査では、対象とする教材について十分な知識を持っている複数の教師の下線引きがどの程度一致するかを調べた。ただし、1学習項目に対して一回だけ下線引いたものが行われ、理解指標のフィードバックは与えなかった。

3.2.1. 実験材料および設定

使用した教材は、教材作成者が講義を担当している、情報処理技術者試験の初級システムアドミニストレーク程度の内容を扱う、「情報処理論Ⅰ」という科目の教科であり、この科目の講義における補助教材として実際に使用したものである。この教材は、31学習項目よりも構成されており、1学習項目あたりA4に1ページから2ページ程度で、1学習項目あたりの文字数が平均1600字前後、文節数が平均250文節前後である。教材作成者が予め下線を引いた正解データとなる部分は、1学習項目あたりの文節数が平均70文節前後（全体の28％程度）であった。

なお、教材には、内容が理解できる図や表を一切含んでいない。被験者は、情報処理科目の教師2名であり、「情報処理論Ⅰ」については、直接講義を担当してはいないものの、十分な専門知識を有している。
3.2.2 実験結果と考察
正解データと被験者の下線引きデータを1学習項目ごとに照合し、(31学習項目の)平均を求めめた結果（各指標）を表1に示す。再現率と適合率は、被験者2名の平均で、それぞれ59.5%、88.2%となった。適合率が高いことは、被験者が重要と思った部分の9割弱が正解データとして用意されていたことを意味しており、ばらつきも小さいことから正解データの精度が高いことを示唆している。また、再現率が必ずしも高くなかったこと、被験者が正解データとして用意されたほど多くの下線引きを行わなかったことを意味しているが、これは、被験者による下線引きが一回限りであったことや、十分な知識を保持しているものの、その科目を直接教える立場にはなかったことから、許容できると考えている。さらに、被験者（教師Aと教師B）の間の各指標で比較し、r検定を行った結果、各指標での有意差は認められなかった。これらのことから、教材を作成者による教材への下線引きによる正解データの用意、ある程度の妥当性を持っていると判断し、この正解データに基づく教材作成者と学習者との実験を行った。より妥当性の高い正解データの作成や評価方法の考案は、今後さらに追求すべき課題と考えている。
なお、ここで用いた再現率と適合率は、以下の式を用いて計算している。

再現率(R) [%] = \frac{Lc}{T} \times 100

適合率(P) [%] = \frac{Lc}{Lc + Lw} \times 100

Lc : 被験者が教師の正解データと同じ文節に下線を引いた文節数
Lw : 被験者が教師の正解データと異なる文節に下線を引いた文節数
T : 教師が予め確認課題(教授目標となる重要な概念)の正解データをまる文節に下線を引いた文節数

<table>
<thead>
<tr>
<th>表1 正解データと被験者の下線引きデータの照合結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>作業時間</td>
</tr>
<tr>
<td>分</td>
</tr>
<tr>
<td>教師A (n=31)</td>
</tr>
<tr>
<td>教師B (n=31)</td>
</tr>
<tr>
<td>教師平均</td>
</tr>
</tbody>
</table>

(1)内の数値は標準偏差を示す。

4. 評価実験
本章では、学習者の下線引きに対する理解指標のフィードバックが読解を促進する効果があるかどうかを評価するために行った実験とその結果について説明する。

4.1 実験方法
本実験では、まず、内容は3.2.1項と同様のまま、下線引き機能だけ有した教材（教材1）と、下線引き機能に加えて理解指標のフィードバック機能を有した教材（教材2）の2種類の教材を用意した。被験者は大学1年生の文科系の学生240名であり、これらの学生がそれぞれ60名ずつの4クラスに分けて授業を受けていることから、教材1および教材2のどちらを利用するかに加えて、予習として利用するか復習として利用するかの条件を加え、4つの条件で実験を行った（表2）。そして、これらの教材を授業の副教材として利用するように受講生に指示した。システムの利用形態については、予習条件では5ないし6学習項目単位の授業が実施される前に、復習条件では授業が実施された後に、その学習項目単位についての教材を利用できるようにした。ただし、システムの利用期間はその学習項目単位で一週間とし、また被験者には事前に、教材の重要部分に下線を引くようにすること、重要部分に関しての確認テストを行うことを伝えた。

授業は各群ともに12回行われ（教員は5ないし6学習項目単位の内容を2回の授業ペースで行う）、被験者1名あたり6回のテストを受けたこととなった。テストは、二週間おきに一度行われ、文章中の箇所に対する適切な用法の穴埋め形式で、演習の授業において用いてきたものとほぼ同様の内容である。一回のテストの出題数は、1学習項目から10問を出題し、合計60問で60問を基準としている。また、被験者に別途、この教材と同じ内容の紙による教材を事前に提供しているので、システムを用いないで学習ができるようにしてある。被験者にはテストの結果は、成績に反映される番号に伝えた。システムの使用は、利用を推奨したもの、成績に反映させることは伝えなかった。学習進度については、各群とも同じペースで実施された。群間の均等性については、各群が対象している各クラスは同一学科に属しており、能力別のクラス編成が行われているわけではないので、クラス間で事前の差はないと考えている。なお、事前に学科の前提となるような授業は行われていない。

以上に加えて、本システムについての主観的評価を学期の最後の授業にアンケート調査により行った。

日本教育工学会論文誌（Jpn. J. Educ. Technol.）

NII-Electronic Library Service
表2 統制群と実験群におけるシステムの利用条件

<table>
<thead>
<tr>
<th>利用条件</th>
<th>【統制群】</th>
<th>教材1_予習</th>
<th>教材2_予習</th>
<th>教材1_復習</th>
<th>教材2_復習</th>
</tr>
</thead>
<tbody>
<tr>
<td>下線引き機能のみの教材1を予習として利用する</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>下線引き機能に加えて理解指標のフィードバック機能のある教材2を予習として利用する</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>下線引き機能のみの教材1を復習として利用する</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>下線引き機能に加えて理解指標のフィードバック機能のある教材2を復習として利用する</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2 実験結果と考察

本システムの利用は推奨であり、強制的なものではなくなかったにもかかわらず、本システムを用いて各学習者が学習した教材の利用率は、予習条件の教材1では44人（73.3%）、教材2では59人（98.3%）となり、復習条件の教材1では46人（76.7%）。

教材2では53人（88.3%）となり、これらの学習者がシステムを十分に利用した学習者であると考え、これらの学習者が対象として、フィードバックの有無の影響を調査することを目的としてさらに分析を行い、結果を表3および表4に示した。ここで、各価は1学習項目ごとの値を全学習項目について平均したものである。

利用回数とは、1学習項目の下線引きについて保存を行った回数であり、利用時間とは、利用一回あたりの時間である。再現率、適合率については、その学習項目について最後に保存された下線引きに対する値である。正答率は、テスト中の1学習項目に相当する問いに対する正答率となっている。

4.2.1 利用率に関して

本システムの利用を推奨したものの、強制ではないため、システムを使用した学習を行なかった被験者が少なかった。このこととは逆に、システムを使用した被験者は主的に利用しているということでもできる。4.2節で示した各群での教材の利用率は、教材2の場合が教材1よりも明らかに高いといえる。

教材1と教材2の違いはフィードバック機能であるので、このフィードバック機能が教材1の利用率の高さに貢献していると考えられる。したがって、下線引きの評価結果をフィードバックすることが、下線引き活動の動機付けとして有効であることが示唆された。

4.2.2 利用回数と利用時間に関して

まず、理解指標のフィードバックの有無や予習、復習にかかわらず、1学習項目について複数回の下線引きの見直しを行っていたことがわかる。これは、下線引き自体の読解活動の促進効果を見ることができる。また、理解指標をフィードバックした場合に懸念される、「理解指標を上げることだけを目的とした、読解を伴わない、下線引き活動」は、一番少ない復習のフィードバックありの場合でも回あたり7分以上システムを利用していることから、それはほとんど現れてなかったと考えられる。予習条件と復習条件の差については、4.2.5項でさらに検討する。

4.2.3 再現率と適合率に関して

再現率、適合率ともに実験群が統制群を上回った。このことは、理解指標のフィードバックがあるため、当然であるが、さらに、再現率と適合率の相関関係を調べると、図3および図4のようにになった。統制群においては、予習条件、復習条件のいずれにおいても、弱い負の相関が見られたのに対して、実験群においては、予習条件、復習条件のいずれにおいても、強い正の相関が見られた。統制群の結果は、適切な下線を多く引いている学習者は適切でない下線も多く引いており（再現率高、適合率低）、適切でない下線をあまり引かない学習者は適切な下線も少なく引いている（再現率低、適合率高）ことを示している。これに対して、実験群の結果は、適切な下線を多く引いていることを示している。このような下線の引き方は、統制群の引き方に比べてより洗練されたものと言え、理解指標のフィードバックは、読解を目的とした下線引きとして、より望ましい振る舞いを促進していると考える。
フィードバック機能を持った教材IIを使用した実験群が有意に高い正答率を示した。さらに、理解指標と正答率の相関関係を調べると、図5および図6のようになった。なお、予習条件、復習条件における統制群での理解指標は、学習者により提示していなかった。予習条件、復習条件に関わらず、統制群にて、実験群により強い正の相関が見られた。この結果は、4.2.2項で述べた利用時間と合わせて、4.2.3項で述べた実験群の下線引きの振り方で、単なるフィードバックされる理解指標を向上させるためだけに行われていたのではなく、実質的に読解に貢献するものとなっていることを示唆している。

4.2.4 正答率に関して

フィードバック機能を持った教材IIを使用した実験群が有意に高い正答率を示した。さらに、理解指標と正答率の相関関係を調べると、図5および図6のようになった。なお、予習条件、復習条件における統制群での理解指標は、学習者により提示していなかった。予習条件、復習条件に関わらず、統制群にて、実験群により強い正の相関が見られた。この結果は、4.2.2項で述べた利用時間と合わせて、4.2.3項で述べた実験群の下線引きの振り方で、単なるフィードバックされる理解指標を向上させるためだけに行われていたのではなく、実質的に読解に貢献するものとなっていることを示唆している。

図5 予習条件における理解指標と正答率の相関関係

図6 復習条件における理解指標と正答率の相関関係

4.2.5 予習と復習に関して

理解指標のフィードバックなしの教材Iと比べて、
図7 各設問に対するアンケートの集計結果

システム改善のためにアンケートに答えてもらった。
「積極性」、「操作性」、「将来性」の設問に関しては、統制群と実験群で、大半で約90%の学習者が肯定的に回答している。これに対して、「有効性」の設問に関しては、肯定的な回答が、統制群では約33%、実験群では約53%となった。この結果は、教材のフィードバック機能の有無が、学習者にとっての主観的なシステム利用の有効性に影響したことが示唆される。

5. まとめと今後の課題

本研究では、教材の読解支援の一つとしての下線引き活動を、e-Learningのインタラクティブ性を活かして支援する方法として、下線引きの評価と評価結果のフィードバックを行う機能を実現した。さらに、この機能を付与した教材を作成し、実際の授業を通じて評価した。

結果として、(1)教材の利用率の増加がみられるから、下線引き活動への動機付けを高めていること、(2)再現率と適合率との相関があるような下線引き活動が見られたことから、より洗練された下線引き活動を促すこと、(3)読解の項目と指導目標を一つにすることに対し得点を期待できることが示唆された。これらのことから、本機能の読解支援における有効性が確認できたと考えている。

本手法は、読解の促進として用いられている下線引きを評価する方法の提案であり、この結果は一般性が高いものであると期待できる。今後の課題は、(1)現在得られているデータのちなる分析、特に個々の学習者の活動の分析、も、(2)評価方法でフィードバック方法の洗練、とともに(3)本手法の一般性を示すため

に他の教材内容への適用、といったことが挙げられる。

参考文献

関友作 (1997) テキストの内容把握に対する箇条書きとキーワード強調の影響. 日本教育工学会論文集, 21(Suppl.): 17-20

先端学習基盤協議会(ALIC)編著 (2003) ; “eラーニング白書”. オーム社, 東京, pp.2-53

魚崎祐子, 野嶋栄一朗 (2000) 下線引き行為が文章理解に及ぼす影響. 日本教育工学会論文集, 24(Suppl.): 237
Summary

In many of the e-Learning systems in common use, the system provides support by identifying a specific learner from his or her learning history. However, this learning history includes things like the instructional material, access time for instructional material frames, and the rate of learning progress. There is a problem because it is impossible to comprehend the learning activities of the learner with respect to the instructional material content by examining the learning history. Then we developed a Learning Support System to act as an index to aid in promotion of the reading comprehension learning activity and reduce the load on learners, we analyzed the “Underlining Data” performed by the learners. This system works by having the learner underline the instructional material content, and then recording it. The data show that the learners rate of system usage and instructional material comprehension increase by receiving feedback on their underlining activities and its learning effect.

KEY WORDS: E-LEARNING, UNDERLINING, FEEDBACK, PROMOTION OF READING COMPREHENSION, LEARNING EFFECT

付録

e-Learning教材文例（評価実験の1学習項目より抜粋）
【コンピュータの仕組み】
コンピュータの機能は大きく、5つに分けられる。機能を、その、各々の機能を、入力/出力/制御機能/制御機能・出力機能/からなる。

1. 入力機能
入力機能とは、コンピュータに、入力/出力/制御機能/からなる。

(Received February 21, 2005)