学習者主導の学習活動における活動プロセスの可視化・分析

瀬下 仁志*・田中 明通*・丸山 美奈*・鈴木 英夫*・高橋 時市郎**
日本電信電話(株) NTTサイバーソリューション研究所*・東京電機大学工学部**

学習活動におけるITの利用が進む中で、学習者主導の学習活動が盛んになってきた。加えて、そうした学習をより深めるための情報として、各学習者の学習履歴を豊富に取得することも可能となっている。しかしながら、豊富で詳細であるがゆえに取り扱いが難しく、収集された履歴を各学習者への適切なフィードバックに活用することは困難であった。そこで我々は、多量な学習履歴をより手軽に活用することを目的として、各学習者の学習履歴を、想定される学習活動の段階に基づいて抽象化することで、活動の変遷や特徴を端的に表現する可視化手法を提案する。本可視化手法は、学習者の活動状況や活動の特徴を、意味内容に立ち入らず、定性的に俯瞰することを可能にする。

本論文では、提案する可視化手法の概要と、我々がこれまでに開発した、調べ学習支援システムを用いた授業実践結果への適用とその分析について述べる。

キーワード：学習履歴、可視化、学習活動プロセス、学習活動スタイル

1. はじめに

学習活動におけるITの利用が進む中で、いわゆる調べ学習やプロジェクト学習のような、学習者主導の学習活動が盛んになってきた。学習者主導の学習活動とは、従来の教師に導かれるスタイルではなく、例えば、WWWでの情報探索やデジタルカメラを用いたフィールドワーク、プレゼンテーションソフトウェアによるまとめ活動と発表など、学習者自らが方法や段取りを考えて、試行錯誤しながら課題に取り組むものである。

加えて、各学習者の学習中の活動履歴（学習履歴）を豊富に取得することも可能となってきた。学習履歴には、各学習者の試行錯誤、学びの過程が含まれるので、学習を裏付け、深めるための情報として重要である。

しかしながら、こうした学習履歴は多量かつ詳細であるため、教師、学習者とも、そのままの形では理解が難しいという問題があった。

そこで我々は、次のような可視化・分析手法を提案する。まず、各学習者の学習履歴を「調べる」「まとめる」等の任意の学習活動段階に分類する。ここでは、この学習履歴の分類を「抽象化」と呼ぶ。次に、抽象化された学習履歴データを可視化する。本論文では、各学習活動段階に対応したカラーを用いた学習時間フレーム、時間軸に沿ってガラフ状に描画する可視化手法を提案する。本可視化手法により、各学習活動段階の特徴や学習活動段階の関の変遷を可視化することができる。

研究授業の実践から得られた実際の学習履歴データに本可視化手法を適用し、学習活動プロセスの分析を試みた。本可視化手法により、(1)学習活動内容の詳細にとらえられることがなく、各学習者が実際に行った学習活動の過程が時系列的にかつ定量的に表現されること、(2)学習活動の把握が容易であること、がわかった。ポーターフィリオ学習における振り返り等、「学び方を学ぶ」ための学習における活用が期待される。

本論文では、提案する学習履歴可視化手法の概要を述べた後、我々が開発した調べ学習支援システムlinkWorksを用いた研究授業の実践結果への可視化手法の適用とその分析について述べる。
2. 学習支援システムにおける履歴の活用

2.1. 従来研究

ITを利用した学習における履歴の活用については、これまでにも様々な観点から検討がなされてきた。最も一般的なものとしては、Web Based Training (WBT) システムにおける、進捗管理が挙げられる。これは、教材のページ閲覧状況や演習解答／正解状況を、各学習者の履歴から集計し、表示するものである。これにより各学習者は、提示された教材における自身の進捗状況を時系列で把握することができる。ただし、この場合には、WBTにおける学習の性質上、学習者自身よりもむしろ、教師や講師側での進捗・成績管理に比重が置かれている。この意味では、教師主導の学習活動における学習履歴の活用に含まれる。また、演習問題の解答状況からさらに分析を進めることで、例えば、S-P 表示による学習内容（教材）、指導方法に関する評価に活用できる。これらはいずれもすでに実用化され、いわゆる e-Learning サービスにおいて多く利用されている。

3. 学習活動プロセスの可視化手法

提案する可視化手法では、収集した学習履歴を元の粒度のままではなく、あらかじめ想定される学習活動の段階に基づいて抽象化した上で、その進捗状況を表現することを特徴とする。以下、その概要を述べる。

3.1. 学習履歴の抽象化と統合

例えば、学習履歴のような課題解決のための学習活動を可視化する手法を提案する。
図1 学習活動カテゴリと具体的学習活動内容の一例

本手法では、このような学習活動カテゴリと具体的な学習活動内容との対応を利用して、学習履歴を学習活動カテゴリに分類・抽象化する。具体的には、ある課題に関する学習活動において、時刻情報の付与された全ての学習履歴に、あらかじめ設定された学習活動カテゴリの分類IDを、イジェクト単位で付与する（図2）。次に、WWWへのアクセスと学習支援システムの機能操作ログのように、同じ課題に対する種類の異なる学習活動の学習履歴をマージした後、時刻によってソートする（図2上-下）、最後に、学習者毎に学習履歴を切り分ける。

なお本手法では、様々な種類の学習履歴をマージするにあたり、ある履歴イベントの発生時には、学習者の主たる着目点が直前のイベントから移ったものと仮定し、学習活動の並列的取り扱いは行わない、つまり、時間帯に分数の分類IDは振らないとすることとする。

実際の学習活動においては、例えば、Webページで調べながら、端末上、もしくは紙の上にメモをとるといった、並行作業は多く発生する。こうした並行作業を略して扱うことは、先の例でいえば、Webページを読むという学習活動が実際よりも短時間に見える、あるいはメモをとってている時間が長く見えるといった、実作業と可視化結果との相違を生む危険を含んでおり、学習履歴の正確な把握にはマイナスとなる。しかしこう一方で、そのような並行作業を正確かつシステムティックに識別し履歴とすることは、様々なセンサ類やビデオカメラ、ロギング・ツール等を多く導入したとしても、現時点では、その学習者の本当の意図を切り分けるという意味ではなお困難であり、特に実際の授業などにおいて利用するという観点からすれば、現実的でない。そこで本手法では、現在の授業実践環境での活用を第一と考え、また学習活動の「俯瞰」を教師と学習者にフィードバックするという立場から、今回は先に挙げた仮定の下、学習履歴を取り扱うこととした。

このような学習者の具体的な作業内容を活動という抽象化された枠組みで解析するアイデアについては、教師のネガティブ・メントルの観点においても既に様々な提案、議論がなされている（林ら 2001, 2002, 2004）。それらが主に、学習者の活動の解析に数構成、モーレ化を目的としている。これに対し、本手法は、基本的には学習活動の統計的特徴や時間的変化を実的に把握可能とする（俯瞰すること）を目的とするものと位置づけられる。

3.2 学習活動プロセス・イメージの生成

前述のようにして生成された学習履歴情報をもとに、学習活動カテゴリの変化を可視化する手法について述べる。具体的には、分類ID毎にあらかじめ設定した固有のカラーを用いて、時間軸に沿って棒グラフ状に描画する（図3）。これにより、学習活動カテゴリの変化、すなわち学習活動プロセスは、学習活動時間に比例し
4. 授業実践による実データ収集

授業実践による実データ収集を行うことを目的として、我々が開発した調べ学習支援システム linkWorks を用いた調べ学習実践を実施した。以下に授業実践と使用システムの概要、および実践の結果について述べる。

4.1. 授業実践の概要

本実践では、中学校 1 年生 131 名を対象とし、選択数学の時間（2 時間+α）において、興味ある数学のテーマに調べ学習を行った（表1）。

2 時間（約100分）程度と比較的短い時間であるが、WWW による情報探索だけでなく、収集した情報のまとめ、コメントの付与、オリジナルのWebページ作成、生徒同士でのコミュニケーションなど、多岐にわたる活動が含まれる。授業は、授業冒頭で課題についての説明を交えた以外は、基本的に各生徒の判断で課題を進めさせることとして、授業終了まで、必要に応じて操作説明等を補足するのみとした。

本実践の結果として、調べ学習活動の支援として、学習履歴の取得とを目的として、後述する調べ学習支援システム linkWorks を用いた。学習者は各自 1 台の操作が与えられた。個人単位で学習を進めた。linkWorks にログインすると、あらかじめ教師によって作成された課題（表2）が提示される。課題の内容の確認やヒント、参考となるWebページへのリンク集など、学習を進める際の指針が示されている。学習者はまず、そうした情報や参考となるページを足枷かりに、検索サービスなどを駆使して情報探索を行った。

収集された情報、さらに linkWorks 上で吟味、編集、linkWorks のレポート形式（コメント付与の順序立てられたプロックマーク集）にまとめ、この際、自身の調えた内容に基づいて、学習者に関するオリジナルのクイズ・ページを作成する。このクイズもレポートの一部とした。

レポート提出まで完了した学習者は、他の学習者が提出したレポートを閲覧し、linkWorks 上で利用可能な掲示板やメッセージングの機能を利用して、レポートの感想やクイズの答えについてコミュニケーションを図った。

4.2. 調べ学習支援システム：linkWorks

linkWorks は、我々がこれまでに開発したWebリソースの仮想教材化システム WebAngel（瀬下ほか 2002）や、Webフォーミュラシステム CoCoFolio（倉ほか 2002、倉ほか 2003）をベースに、情報を探索、蓄積、編集・吟味、共有・交流といった、これまでの研究授業における調べ学習実践の場で必須とされた学習活動を支援することを目的とした学習支援システムである（瀬下ほか 2004）。同時に、システム上で行われる全ての学習活動を、ログとして詳細に記録する機能を備えている。

以降、linkWorks が提供する様々な学習支援機能を、調べの学習活動（図4）に沿って述べる。

<table>
<thead>
<tr>
<th>表1</th>
<th>授業実践の概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル：</td>
<td>「数学者調べ」</td>
</tr>
<tr>
<td>内容：</td>
<td>自分の興味ある数学者について、WWWを中心に調べ、レポートとしてまとめ、その際、元のクイズ・ページを作成すること。</td>
</tr>
<tr>
<td>対象：</td>
<td>中学校 1 年生 131 名（担当教師 1 名）</td>
</tr>
<tr>
<td>授業時間：</td>
<td>2 時間（ただし授業外活動も一部あり）</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表2</th>
<th>本実践で用いた課題の概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル：</td>
<td>「数学者調べ」</td>
</tr>
<tr>
<td>課題：</td>
<td>自分が調べた数学者と、Webページ上にある数学者の情報を組み合わせ、数学者を紹介することをやってみよう</td>
</tr>
<tr>
<td>リンク集：</td>
<td>1. 「数学史」 [2] [1]</td>
</tr>
<tr>
<td></td>
<td>解説：数学史がよくわかります</td>
</tr>
<tr>
<td></td>
<td>2. 「世界の数学家」 [2] [3]</td>
</tr>
<tr>
<td></td>
<td>解説：世界の数学家がよくわかります</td>
</tr>
<tr>
<td></td>
<td>3. 「Yahoo! JAPAN」で検索 [2] [5]</td>
</tr>
<tr>
<td></td>
<td>解説：Yahoo! JAPANで検索してみましょう</td>
</tr>
<tr>
<td></td>
<td>4. 「自分の作ったページ」</td>
</tr>
<tr>
<td></td>
<td>※自作クイズ・ページへのリンク</td>
</tr>
</tbody>
</table>
4.2.2 システム構成
システムは、Linuxサーバー上に構築され、Webリソースへのアクセスを制御すると同時に、学習者の学習行動をトラッキングするApacheベースの高機能Proxyサーバーと、支援機能全体を実行するJavaServlet/JavaServerPagesによるWebアプリケーションから構成される（図4）。

本システムでは、Webアプリケーションによる支援機能の操作に加え、Proxyサーバーにて集約される、Webリソースへの全てのリクエストが履歴として記録されている。これにより、前項で述べた一連の学習活動の全てについて、学習履歴を収集・集約することが可能となる。

4.3 授業実践結果
前節4.1で述べた課題について、linkWorksを用いた研究授業を実施した。2時間という短時間ながらも、ほぼ全ての学習者の（131名中129名）が情報探索から蓄積、編集を経て、クイズ・ページを含むレポートを提出し、他の学習者と交流を図るまで至る事が出来た。

学習者平均では、Webリソースへのアクセス数は16であった。また、平均6個のコメント付きブックマークを蓄積、そのうち4.6個を選んで、83文字程度のまとめの文章を書き、レポートを提出した。

本授業実践の分析と可視化については、次章にて詳しく述べる。

5 実データによる可視化・分析
5.1 学習活動プロセスの可視化例
授業実践で得られた学習履歴を用いて、提案手法による可視化を試みた。

5.1.1 単一学習者の可視化例
図6に学習者一人の学習履歴の可視化の例を示す。この例では、ある学習者の学習開始から終了までに
linkWorksによって収集された全ての学習履歴を、可視化の対象としている。

図6の可視化例では、6つの学習活動カテゴリを設定した。設定した学習活動カテゴリと具体的な操作との対応を表3に示す。

表3の学習活動カテゴリは、我々のこれまでの授業実践における経験や知見、現場の教師との議論を踏まえて、設定した。調査学習における基本的な要素として、「調える」、「まとめる」、「発表する」、「交流（議論）」の4つを設定した。ここで、本実践の課題内容や時間的制約などのために、特に「調える」活動の割合が増えるのではないかとの予測から、「調える」カテゴリをさらに3分割して、一段詳しく検討することとした。

このように、学習課題の内容や形式、時間などの実施条件、さらには特に着目すべき活動はなにかといった要求条件から、可視化の実施者は、学習活動カテゴリを任意の段階、抽象度に設定することができます。今回の例では、調査学習、なかでも「調える」という学習活動を軸として、「調える」「検索」「発表」「交流」という詳細な3つのサブカテゴリを設定した。場合によっては、さらに「情報の取捨選択」、「レポート作成」といったカテゴリを設定することも可能だろう。また、調べ学習以外の場面であれば当然、異なる学習活動が主となると考えられる。

図6に示したように、この可視化例では学習活動カテゴリを表すカラーが、概ね青系色から赤系色、そして緑系色へと変化している。つまり、学習活動が情報探索からまとめ作業、発表（レポートの公開）、他の学習者との交流へと、カテゴリの設定に際して想定した学習活動段階に沿って進んでいることが、容易に見て取れる。このことは、調べ学習における典型的な学習活動段階を、教師先導型ではなく、学習者主導で実施できていることを示していると考えられる。

5.1.2 1クラス全学習者（41名）の可視化例

次に、今回授業を受けたあるクラス41名（男子21名、女子20名）の学習履歴を可視化した結果を示す（図7）。なお、図7の可視化例においても、図6の例と同様に、表3に示した6つの学習活動カテゴリにもとづいて可視化を行った。

図7より、図6で示された学習者の特徴がクラス全員に共通するものとは限らず、各学習活動に費やす時間や学習活動の選択の仕方が学習者ごとに異なっていること、すなわち、短時間の学習であっても、情報探索における検索の使い方や、まとめ作業を行うタイミングなどが、各学習者で異なることが、可視化結果の一覧から容易に見て取れる。

表3 可視化例における学習活動カテゴリの詳細

<table>
<thead>
<tr>
<th>No.</th>
<th>カテゴリ名</th>
<th>具体的な操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>調える（閲覧）</td>
<td>Webページの閲覧</td>
</tr>
<tr>
<td>2.</td>
<td>調える（検索）</td>
<td>検索サービスの利用等</td>
</tr>
<tr>
<td>3.</td>
<td>調える（蓄積）</td>
<td>ブックマーク登録（コメントの付与を含む）</td>
</tr>
<tr>
<td>4.</td>
<td>まとめる</td>
<td>ブックマークの推奨、レポートの編集など</td>
</tr>
<tr>
<td>5.</td>
<td>発表する</td>
<td>レポートの提出（公開）</td>
</tr>
<tr>
<td>6.</td>
<td>交流する</td>
<td>掲示板、個別メッセージの読み書き</td>
</tr>
</tbody>
</table>

図7 クラス41名分の学習活動プロセス表示例

日本教育工学会論文誌（Jpn. J. Educ. Technol.）
5.2. 分析：学習活動プロセスによるクラスタリング

前節の可視化例から、同じ授業における学習であっても、学習者によって異なるスタイルで学習を進めていくことがわたった。そこで我々は、各学習者の学習活動プロセスから、今回の調べ学習の典型的であり、他は特徴的な学習活動のスタイルを見つけることを目的として、学習者のクラスタリングを試みた。

5.2.1. 特徴量の設定

クラスタリングを行う際に用いる、各学習者の学習活動プロセスの特徴を表す量として、今回は学習時間に対する各カテゴリーの学習活動に費やした時間の割合（以下、学習活動時間比と呼ぶ）を算出して用いた（図8）。各学習活動時間比は、課題に取り組んだ学習者が、どの種の活動に重きを置いていたかを示すものであり、学習活動プロセスの全体的な傾向を示すものといえる。

また、学習者の学習活動プロセスの特徴を、各学習活動カテゴリーの学習活動時間比を成分とする特徴ベクトルで表現することができる。

5.2.2. クラスタリング

ここでは、図7と同じ生徒41名を対象としてクラスタリングした結果について述べる。まず、この41名の特徴ベクトルを図9に示す。

この特徴ベクトル群に対して、L2距離を用いた最近隣法による階層型のクラスタリングを行った。その結果得られた樹状図を、図10に示す。

ここで仮に、結合距離200を閾値とすると、41名の生徒を9つのクラスタに分割できる（図10の交点に対応、上から順にクラスタA〜Iとする）。以降、この9つのクラスタについて詳細に分析することとする。

5.2.3. 各クラスタの分析

図11に各クラスタの特徴ベクトルの平均、および全体の平均を示す。なお、各クラスタに属する学習者は、クラスタAが24名、クラスタB、Cが各2名、クラスタD、Fが各3名、クラスタEが4名、クラスタG、H、Iが各1名であった。

図11から、算出された各クラスタでは、全体平均とは異なる特徴が見受けられる。各クラスタの特徴パターンを表4に示す。表中の記号で、「+」は全体平均と比較して5〜10%割合の多いもの、」「+」は10%以上多いもの、」-」は全体平均と比較して5〜10%割合の少ないもの、」++」は10%以上少ないものを示す。逆に、」-」は全体平均と比較して5〜10%割合の少ないもの、」++」は10%以上少ないものを示す。表4からも明らかのように、全体平均と比較して、費やした時間の割合が特に多い、もしくは少ない
い学習活動カテゴリが存在しており、これがクラスを特徴づけていると考えられる。

例えば、クラス F や I の学習者は、平均よりも Web ページの閲覧時間が短いが、検索を要する時間が長い。これは、検索結果上での印象に時間をかけるため、関係なページを辿って情報を探すことが少ないものと考えられる。逆に、クラス A の学習者は、検索は平均程度しか行わないが、閲覧時間は非常に長いことから、リンクを多く辿る、あるいは見つけたページを長くみる傾向があったものと思われる。

また、クラス D, G, H の学習者が、情報の蓄積、すなわちブックマークの登録に非常に時間をかけているのに対して、クラス B や E の学習者は、蓄積よりもまとめ作業に多くの時間を費やしている。これは、レポートの材料となるブックマークについて、そのタイトルやメモ内容を登録時に時間をかけて吟味する場合と、適当に集めてからあとで吟味する場合の差ではないかと考えられる。

このように、生徒の学習活動プロセスが持つ特徴量に基づいて算出されたクラスは、授業実践の内容や文脈に沿って説明可能であり、学習者主導の学習活動における活動プロセスの傾向、すなわち学習活動のスタイルを定量的に表すものと考えられる。

こうした観点から、図11の全体平均の特徴を考えると、このクラス41名の典型的な学習活動のスタイルは、情報の閲覧、つまり Web ページの閲覧に全活動の半分を費やし、残りの時間を、検索や蓄積（ブックマーク操作）、まとめ作業、他の学習者の交流にそれぞれ均等に費やしていることがわかる。これは、短時間の学習にあって、情報源を WWW に結び、かつ日頃なじみの薄い数学者に関する調査を行ったという点からすれば、妥当な結果と考える。

6. 考 察

6.1 学習履歴における「傾向」と「詳細」

これまでに示したように、本論文のアプローチによる学習活動プロセスの可視化は、多種多様な学習履歴に潜む学習者の行動を、照明的に捉えるものといえる。こうした傾向的な視点は、それぞれがデータレベルでの学習過程を表すと同時に、より詳細な履歴内容との対応においても重要な意味を持つ。

例えば、図6や図7では、学習活動プロセスの特徴として、学習活動カテゴリ「調べる（検索）」と「調べる（閲覧）」の頻繁な繰り返し、学習者によらず縦状のパターンとして多く見受けられる。これはカテゴリ名の通り、WWW での情報探索において、検索サービスの利用と実際の Web ページ閲覧が交互に、かつ頻繁に行われていることを意味する。このような行動のパターンは一般的なように思われるが、実際には WWW での情報探索に対して、ある程度習慣した人に見られる特徴的な行動であると報告されている（新垣・野島 1999）。すなわち、こうした行動パターンが全般的に見られるということは、このクラスの生徒の WWW による情報探索に対する習熟度が、平均して高いことを意味すると考えられる。

その一方で、学習履歴の詳細からは、WWW による情報探索に関して、異なる視点を加味することができる。例えば、今回の授業実践に参加した全生徒について、利用した検索サービスと投入されたキーワードとの組み合わせ上位10個（表5）をみると、重複したリクエストが少なくないことかかった。

この上位10個が全ての検索リクエストに占める割合

日本教育工学会論文誌（Jpn. J. Educ. Technol.）
は24.4%程であるが、それでも、同じ検索サービスに似たキーワードを投入していることと、各学習者は似たような検索結果を得ていることになる。これに加えて、先に述べたような情報探索の行動パターン（検索と閲覧を短い周期で繰り返す）があるとすれば、各生徒は検索結果の上位からWebページを選択して閲覧し、それ以上はリンクを進まなくても検索結果にとどることを繰り返している可能性が高いといえる。このことは、生徒がブックマークをした上位10ページの中で、参考リンクからすぐに進まんなど検索結果にとどることを進まんどの検索サービスに定まっていた31）を差し引いても、結果としてWWWによる情報探索の範囲は狭まっていたともいえるだろう。

このように、学習活動プロセスの可視化結果から特徴的な行動パターンに着目し、その学習履歴の具体的内容を加味してみる、すなわち学習履歴の「俯瞰」と「詳細」を関連付けることで、より深い意味での学習状況の把握、分析につながるものではないかと考える。

なお、学習活動プロセスに含まれる特徴的な行動パターンについては、既にいくつかのアプローチについて検討を行っているが（森谷ほか 2004, 2005, 地神ほか 2004）, その詳細とまとめについては、稿を改めて報告したい。

6.2 学習活動スタイルと学習評価の関係

学習者主導の学習活動における活動プロセスの傾向、すなわち学習活動スタイルと学習評価との関係については、先の検索の例のように学習履歴の内容詳細と関連する面もあり、一概には定められない。

ただし、一つの仮定として、特に時間や学習対象などの条件が定まった今回のような課題にあっては、その条件満たす、課題解決に妥当な（比較的効率のよい学習活動スタイルが存在するのではないかとも考えられる。そこで、今回の実践における学習成果物である生徒のレポートについて、実践を担当していただいた教員に評価を依頼し、表4で示したクラスタ毎に平均点を算出した。その結果を表6に示す。なおレポートの評価点は、1)ストーリー（ページ順序の適切さ）、2)付与されたメモ・コメントの適切さ、3)クイズ・ページの完成度、の3つの観点について、それぞれ4段階評価を行い、その合計とした（12点満点）。また各クラスタの特徴については、学習の主体であったWebページ閲覧の多少と、それ以外の主な特徴という組み合わせから整理し、命名している。

表6の結果から、今回の実践に関して言えば、最もメンバー数が多く、全体平均とほぼ同じ傾向を持つクラスタAが、全体平均と比較しても高い平均点を示していることがわかる。一方で、全体平均に対してWebページの閲覧に割く時間数の少ないグループ（クラスタE〜I）の方が、平均的なWebページ閲覧を行ったグループ（クラスタA〜D）よりも、平均点が高い（レポート未提出であったクラスタIを除いた平均点は9.4）。また、WEBページの閲覧に関わらず、検索に時間数を多く割いた場合（クラスタC, F, I）には、平均点は低くなっている。このような学習活動スタイルと学習評価の関係は、学習活動プロセスに示される特徴が成果物の評価に影響する、つまり先の仮定に適合する部分があることを示唆していると考えられる。

以上はあくまで少ないサンプルでの一例であり、条件や学習対象が異なる、異なる関係が現れることも当然考えられるが、他のクラスタと比べてクラスタAのメンバーが、この内部にも異なる学習活動

<table>
<thead>
<tr>
<th>検索リクエスト</th>
<th>TOP10</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>検索サービス</td>
</tr>
<tr>
<td>1.</td>
<td>Yahoo! 検索</td>
</tr>
<tr>
<td>2.</td>
<td>Yahoo! 検索</td>
</tr>
<tr>
<td>3.</td>
<td>Yahoo! 検索</td>
</tr>
<tr>
<td>4.</td>
<td>Yahoo! 検索</td>
</tr>
<tr>
<td>5.</td>
<td>Yahoo! 検索</td>
</tr>
<tr>
<td>6.</td>
<td>Yahoo! 検索</td>
</tr>
<tr>
<td>7.</td>
<td>Yahoo! 検索</td>
</tr>
<tr>
<td>8.</td>
<td>Yahoo! 検索</td>
</tr>
<tr>
<td>9.</td>
<td>Yahoo! 検索</td>
</tr>
<tr>
<td>10.</td>
<td>Yahoo! 検索</td>
</tr>
</tbody>
</table>

Vol. 29, No. 3 (2005)
スタイルの特徴を持つ、未分化なクラスタが存在している可能性もある。しかしながら、そうした関係を様々な条件に対して類別することができれば、学習過程における活動状況の観察から、例えば学習の行き詰まった要支援の生徒群を抽出したり、より学びを深めるための個別指導をしたりするなど、教師支援に応用することが考えられるだろう。

7. まとめ

本論文では、学習者主導の学習活動において取得される多種多様な履歴から、学習の状況や活動のスタイルを、意味内容を立ち上げ定的に整理する可視化手法と、その実データへの適用について述べた。

本可視化手法は、学習履歴に対する新たな観点を提案するものであり、「俯瞰」であるが故に学習者それぞれの「学び方」を定量的に明らかにする可能性を持つと考える。そうして示された「学び方」は、学習者がメタ・レベルの学習に対する気づきを与えうるだけでなく、教授者の指導意図、授業展開の学習者のへの浸透度合いを示すという意味も合わせ持つ。加えて、考察で述べたような「俯瞰」と「詳細」との関連付け、学習評価との関係などからは、より学びの質を高めるような学習活動スタイルに関する知見が期待される。

今後は、今回は異なる対象、課題等における授業実践を重ね、一般論としての学習活動カテゴリ設定、あるいは対象や課題毎に最適な学習活動カテゴリ設定やクラスタリング手法に関する知見を得ることで、学習者、教師双方への安定したフィードバックを実現し、ポートフォリオ学習、振り返り等に活用可能なシステムの構築を進める。また同時に、教育的な知見に関する議論、検証についても進みたい。

謝辞

授業実践の企画・実施において多大なご尽力を頂きました東京学芸大学附属大泉中学校 松元新一郎 教授、ならびに授業に参加いただきました生徒の皆さんに深く感謝いたします。また、教育学や可視化など、より専門的な立場からご指導賜りました東京学芸大学国際教育センター 佐藤郁衛 教授、東京農工大学工学部斎藤隆文 教授に深く感謝いたします。加えて、日頃ご指導を賜る外村俊伸 研究部長、ならびに日々議論して頂いたプロジェクトのメンバー各位に、深く感謝いたします。

注
1) 本手法では、時刻情報が付与され、学習者単位での切り出しが出せる可能である。全ての学習履歴を対象とする。本論文では特に、自動収集が可能なWWWページの閲覧履歴（いわゆるアクセスログ）や、学習支援システム上での機能操作ログなどを扱うが、必ずしもこのような履歴ではない。元の条件によってあれば、紙ベースの観察記録や端末上のキー・ロガーのログ、ビデオ映像など、デジタル/アナログに限らず対象を考えることができる。
2) 各参考リンクのURLは、以下の通りである。
[c] http://www.yahoo.co.jp/
3) ほとんどの学習者が同じYahoo検索を使うことで、一部には別のサービスを使う学習者も見受けられました。こうした学習者は、まずYahoo検索を用いて自分の使い慣れた検索サービスを探し、その上で課題に関する検索を行っていました。

参考文献

新垣紀子、野島久雄（1999）“ナビゲーション行動としてのWWW検索”。情処学III研報、99-HI-55：1-6
林雄介、津本紘秋、池田満、溝口理一郎（2001）“学習する組織”実現に向けた学習コンテンツの体系化と利用の枠組み～オントロジーに基づくナレッジマネジメント支援に向けて～”。人工知能の教育研究、SIG-IIES-A003：43-50
林雄介、津本紘秋、海老谷派也、池田満、溝口理一郎（2002）“知の創造・継承支援環境Kfarmにおける組織学習モデルの構成”。2002人工知能大会、2C3-03
林雄介、池田満（2004）“知の系統グラフによるコミュニティ活動のモデル化”。2004人工知能大会、1D2-06
地神聡美、森谷友昭、高橋時市郎、瀬下仁志、田中明通、藤本強、丸山美奈、鈴木英夫（2004）“学習活動時間に基づくWeb使用学習履歴の分析”。FIT 2004、K-041

日本教育工学会論文集（Jpn. J. Educ. Technol.）

瀬下仁志、野田隆広、丸山美奈、田中明通、高橋時市郎 (2002) “WWW を対象とした調べ学習支援システム：WebAngel”。信学技報, 102 : 7-12

Summary

By using information technology, it has become possible to get large amount of learning histories. However, it is still difficult to use them effectively. We propose a technique for abstracting each learner’s learning history and visualizing the result as a process of learning activities representing the feature of learner’s behavior. This technique makes it possible to show the feature of learning activity, not by getting into the contents of learning.

KEY WORDS: LEARNING HISTORY, VISUALIZATION, PROCESS OF LEARNING ACTIVITIES, STYLE OF LEARNING ACTIVITIES

(Received February 22, 2005)