表計算ソフト習得のための授業改善†

橋本俊行*1
近畿大学九州短期大学*1

表計算ソフト習得のための授業改善を目的として、マルチメディア教材を制作し、授業に利用した。この授業では、動機づけのために日本情報処理検定協会が主催する表計算の検定試験3級及び2級の合格を目指している。制作した教材は、検定模擬問題解答のPC画面を動画キャプチャしたにも、ナレーション、写真、テストなどを付加した動画像ファイルである。授業は自主学習を主体とし、質問に対しては教員が個別に回答するスタイルとした。

この結果、受講生の検定合格率が、3級では従来の80%程度から96%へ、2級では従来の40%程度から77.1%へと向上し、授業改善が達成された。また、授業中の質問が大幅に少なくなる模擬問題の解答スピードが著しく速くなった。さらに、授業期間終了後に実施したアンケートに回答した受講生全員が、この教材が役に立った、もしくは大いに役に立ったと言えた。

キーワード：表計算ソフト、授業改善、検定試験、マルチメディア教材、自主学習

1. はじめに

著者は、近畿大学九州短期大学（以下、「本学」）において、表計算ソフト（以下、「SP」）の習得を課題とする授業を行っている。受講生の動機づけのために、1994年以来、日本情報処理検定協会（本部名古屋市、以下、「日検」）が主催するSP検定試験の合格を目指してきたが、近年以下の3つの理由により成果が十分上がらない状況が生まれてきた。

第一の理由は受講生の基礎学力低下である。著者は同じクラスの数学の授業で毎年同じ問題（図部部1999）による学力調査試験を行っているが、その結果、平均点が調査開始の2002年度の109点満点で、10点下（2005年度）、14点下（2006年度）、13点下（2007年度）と確実に低下している。

第二の理由は受講生のPCスキルに関する個人差が拡大してきたことである。その原因は、近年の学校教育への情報教育の導入や家庭へのPC普及によると考えられる。情報教育導入以前には、入学時点でほぼクラスマンがPC未経験であったが、2007年度受講生のアンケートによれば、全員が高校時代にPCの授業を受けている。そのうちタッチタイピングを指導されたものが36.1%であり、高校での指導内容は難しかったことが推察される。また、家庭でPCが使える受講生が75.0%,インターネットを使う受講生が55.5%であり、家庭のPC環境にも相当する違いがあることが推察される。

第三の理由は介護系資格の取得をめざす受講生が学外実習のため、後期（2級の学習期間）に2週連続して欠席（公欠として認められている）することである。これは学習進度に大きな影響を与え、それにによる遅れを取りもどすことは容易ではない。

以上の理由により、分かってやすく、個人差に対応するための授業改善がむしろ必要であった。

ここで、本研究と同様の理由に基づき実施された先行研究を概観してみる。

荒川ほか（2004）は、学生の「学力低下」や「学習意欲の低さ」、「基礎学力の多様化」（PCスキルの多様化とも通じる）などを、本研究と同様の理由により、「授業改善」の努力を行わない限り、教育の質確保は困難な状況になってきたと指摘している。そして、情報技術による学生の自発的学習を促進する教育の質向上を図ることを目的とした教育法を提案し、その有効性を確かめている。

2008年1月28日受理
† Toshiyuki HASHIMOTO*1：Improvement of Instruction for Spreadsheet Skills Acquisition
*1 Kyushu Junior College of Kinki University, 1-5-30, komodahigashi, iizuka-shi, Fukuoka, 820-8513 Japan

Vol. 32, No. 2 (2008)
表1 日検のSP検定出題内容

<table>
<thead>
<tr>
<th>項目</th>
<th>出題内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>文字・数字の入力</td>
</tr>
<tr>
<td>2</td>
<td>列挿入削除</td>
</tr>
<tr>
<td>3</td>
<td>計算式</td>
</tr>
<tr>
<td>4</td>
<td>合計・平均関数</td>
</tr>
<tr>
<td>5</td>
<td>組み合わせ</td>
</tr>
<tr>
<td>6</td>
<td>表示形式（文字・数値の3桁からコンマ・小数点など）</td>
</tr>
<tr>
<td>7</td>
<td>表表示</td>
</tr>
<tr>
<td>8</td>
<td>表豊・見出しの中央揃え</td>
</tr>
<tr>
<td>9</td>
<td>文字列の左揃え・数字の右揃え</td>
</tr>
<tr>
<td>10</td>
<td>判断文（IF文）</td>
</tr>
<tr>
<td>11</td>
<td>構成要素の計算</td>
</tr>
<tr>
<td>12</td>
<td>最大値・最小値の検素（MAX・MIN）</td>
</tr>
<tr>
<td>13</td>
<td>統数関数（切り捨て・切り上げ・四捨五入など）</td>
</tr>
<tr>
<td>14</td>
<td>視位付け（RANK）</td>
</tr>
<tr>
<td>15</td>
<td>日付表示</td>
</tr>
<tr>
<td>16</td>
<td>検索（VLOOKUPなど）</td>
</tr>
<tr>
<td>17</td>
<td>継続演算子（AND・OR）</td>
</tr>
<tr>
<td>18</td>
<td>日付・時刻の計算</td>
</tr>
<tr>
<td>19</td>
<td>グラフ作成</td>
</tr>
<tr>
<td>20</td>
<td>敷式解決のためのセル内数式の文字列化</td>
</tr>
</tbody>
</table>

表2 授業方法の概要

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>受講対象</td>
<td>近畿大学九州短期大学生産福祉情報科1年生</td>
</tr>
<tr>
<td></td>
<td>情報科1年生および30〜40名程度</td>
</tr>
<tr>
<td>授業期間</td>
<td>通年（前期: 4・7月、後期: 9・12月）</td>
</tr>
<tr>
<td>授業時間・回数</td>
<td>毎週1回90分、前後・後期ともそれぞれ15回</td>
</tr>
<tr>
<td>授業内容</td>
<td>表計算ソフト（SP）の習得</td>
</tr>
<tr>
<td></td>
<td>検定試験合格を目標</td>
</tr>
<tr>
<td>使用ソフト</td>
<td>Microsoft Excel</td>
</tr>
<tr>
<td>マルチメディア教材</td>
<td>2006年度より3級</td>
</tr>
<tr>
<td>の利用年度</td>
<td>2007年度より2級</td>
</tr>
<tr>
<td>検定試験実施月</td>
<td>3級（7月）、2級（12月）</td>
</tr>
</tbody>
</table>

加速するのは明確であった。教員が個々の学生に対応して指導を行うには限界が生じているのが現状であった。」と述べ、「習得格差」と「問題解決能力格差」に着目した格差は正の研究について報告している。

新井ほか（2004）は、学習学実験において学生が自主的に問題を解決し、円滑に学習を進めていくことを支援するマルチメディア教材の開発と授業実践を行い、有効性を確かめている。教員がいなくても自主的に学習できるようにするという目的は本研究と一致している。

清水（2007）は、栄養士や介護福祉士などの養成校として、学外実習により欠けた授業の自主的な補講を利用することを目的として、マルチメディアを利用した授業記録とeラーニングの取り組みについて報告している。これは、前述した本学の介護知識資格の場合と共通の事情に基づくものである。

本研究は、以上の研究と同様の背景の下に、マルチメディア教材を利用して、SP習得のための授業改善を行おうとするものである。

2. 方法

2.1. 教材の検討

授業で使用している日検のSP検定模擬問題は、3級で1〜12、2級で1〜15ままである。参考のために、出題内容（日検2006）を表1に示す。

これらの出題内容は、次の2つに分類される。

①操作技術を問うもの…データ入力やPCメニュー操作など、単なる手続きに関するもの

②論理的思考力を問うもの…関数・計算式のような数学的解決力を必要とするもの

なお、表1には含まれていないが、複数変数の作成がある

日本教育工学会論文誌（Jpn. J. Educ. Technol.）
2級の場合、作表手順も論理的思考力を必要とし、指導が必要である。このうち、特に1に関しては、繰り返し再生視聴できるマルチメディア教材が有効と考えられ、さらに個人差に対応する意味からもマルチメディア教材を利用して授業改革を図ることとした。

日楨がマルチメディア教材を提供していないことと、対応する市販教材もないため、教材は著者がすべて作成した。PC画面のキャプチャ及び編集ソフトとして、ezsCAM2000及びその後継のMovieCAM（販売は、ソフト・オン・ネットジャパン株式会社）を用いた。

マルチメディア教材では、実行形式ファイル（ezsCAM2000）もしくは拡張子WMVの動画ファイル（MovieCAM）である。

3級及び2級のそれぞれ1番目の模擬問題に関しては、解答過程の画面をキャプチャーし、ナレーション、キーボードの写真（例えば、相対セル参照を絶対セル参照にするためのF4キーなど）、関数説明のテキストポックスなどを挿入・付加して動画ファイルを作成した。画面例を図1に示す。

留意点としては、画面からすべての情報が分かるようなオールインワンタイプのものを作った。受講生がマルチメディア教材を使用しながら別教材を必要とすると、集中力が低下すると考えたからである。

各級とも2番目以降の模擬問題に関しては、解答過程をキャプチャーしただけの動画ファイルを作製した。それぞれの級において基本的な作表手順はほぼ同じなので、詳細な教材は1番目の模擬問題のみとした。

マルチメディア教材の場合、前述のようにリアルタイムで行う一斉説明では出来ない様々な情報を画面上に表示できるので、理解が容易になると考えられる。

授業環境

教室には、50台のPCと1台の教卓PCが配置されている。各受講生PCのすぐ横には提示モニターが設置されており、教卓PCの操作過程がこのモニターに提示されるようになっている。教材はファイルサーバーに保存されているので、授業時間外でも学内LANに接続されたオープンスペースのPCからいつでも聞いて学習できるようにしている。インターネット上には配信していないが、著者が制作した教材は自由にコピーして持ち帰ってよいとされている。授業のスタッフは著者1名であり、補助者は配置されていない。

2.3 授業方法

2.3.1 従来の授業方法と問題点

授業方法の概要を表2に示す。受講生は、日検の模擬問題を解くことによりSPの基礎を学び、あわせて就職対策として検定試験の合格を目標としている。前期（3級）、後期（2級）とも授業の最終回に検定試験を実施するようにしている。

マルチメディア教材を使用しない従来の授業では次のような進め方をしていた。教員が教卓PCで解答過程をリアルタイムで提示モニターに提示し、受講生はそれを見ながら自分で模擬問題を解いていく。解答操作の提示は何段階かに分け、それぞれの段階で一斉説明と機間巡視を行っていた。別途説明が必要な事項については、プリント教材を配布し、それを教卓PCから提示用モニターに提示しながら説明をした。

しかしながら、リアルタイムの一斉説明では、いったん操作についていけなくなった受講生が理解できなくなってしまった。

そのため、しばしば同じ一斉説明を何度も繰り返す必要があった。新井ほか（2004）の報告における、「学生は教員からの回答が得られるまで次の操作に進むことができず実験が停滞する」という状況である。

2.3.2 オンライン教材を利用した授業方法

授業環境は従来の授業方法の場合と同じである。マルチメディア教材の制作と一斉説明の回数に対する年度別の状況を表3に示す。2級に関しては、2006年度は試行的に利用し、2007年度から本格的に利用を開始した。2007年度には、一斉説明をやめて、機間巡視と個人質問のみというスタイルとした。

なお、2007年度には3，2級とも解答を紙に印刷して提出するように指導した。従来はPCファイルとして保存するだけであったが、「強制力」（荒川ほか2004）を働かせ、また、目標と達成感を与えるために、このように指導した。

表3 マルチメディア教材の制作状況

<table>
<thead>
<tr>
<th>年度</th>
<th>制作したマルチメディア教材</th>
<th>一斉説明回数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1級</td>
<td>2級</td>
</tr>
<tr>
<td>2004</td>
<td>なし</td>
<td>なし</td>
</tr>
<tr>
<td>2005</td>
<td>なし</td>
<td>なし</td>
</tr>
<tr>
<td>2006</td>
<td>模擬問題</td>
<td>模擬問題</td>
</tr>
<tr>
<td>2007</td>
<td>模擬問題</td>
<td>全部</td>
</tr>
</tbody>
</table>

Vol. 32, No. 2 (2008)
3. 結果及び考察

3.1. 授業改善の評価

検定試験の合格を授業の主な目標としたので、次に示す受講生数に対する検定合格者数の比率を授業改善の指標とする。

3級合格率＝3級合格者数／受講生数
2級合格率＝2級合格者数／受講生数

なお、3級は受講生全員に受検させるが、2級は希望者受検としている。そのため、2級では受検を断念する受検生もいるため受検申込者は受講生数より少なくなる。しかし、授業目標として検定合格を設定しているので、授業改善の指標となる検定合格率としては、上記の式を用いることとした。2004～2007年度受検結果のデータを表4に、グラフを図2に示す。

3級合格率

マルチメディア教材の利用を開始した2006年度に、それまでの80％程度から96.0％へと大幅に向上し、2007年度もほぼ同じ結果を得ることができた。また、両年度とも不合格者は1名で従来にくらべて激減した。

2級合格率

2006年度に試行的にマルチメディア教材を利用したものの、合格率が前年にくらべてやや下回った。この原因について考察するため、関連巡査の質問を論理的思考力に関するものに限定し、操作技能に関してはマルチメディア教材の視聴で自主学習のように指導したが、マルチメディア教材が十分でなかったために操作技能に関しても十分な理解ができないまま受検に至ったことが考えられる。

また、受講生中に自然発生的に形成された数名程度の2つのグループA、Bに関する考察から次のことことが推察される。グループAは積極的にマルチメディア教材を視聴し、自力で操作技能を身につけたので、論理的思考力に関する質問を積極的にし、これに教員が回答していないことで理解がすんだ。一方、グループBはマルチメディア教材の視聴に熱心ではなく自己流の解き方に固執したために、操作技能面でのつまりがしばしばみられた。結果として、集団Aは全員合格、集団Bは全員不合格となった。

集団Bの反省から、より分かりやすく、質量共に充実したマルチメディア教材を準備し、指導を徹底することを2007年度の授業方針とした。2007年度は、模擬問題1～5のみしか作成しなかったことに加え、それぞれの模擬問題を解決されない項目に含まれる画面についてのみ部分的に動画ファイルを作成したので受講生が理解できない部分の教材がなかったとき、該当ファイルをさがしにくいということであった。これに対して、2007年度は、模擬問題の1～13について、それぞれ全操作過程を一編の動画ファイルとして作成したので、受講生は任意の箇所で一時停止し、作表に移ったり、メモをとることが可能になった。教材の特徴に関しては3.4で詳述する。

この結果、2007年度の2級合格率はそれまでの40％程度から77.1％へと大幅に向上した。

以上の結果から、マルチメディア教材の利用により授業改善が達成されたと考えられる。

3.2. 授業の特徴

従来の授業にくらべて、マルチメディア教材を利用した授業では以下のような特徴が認められた。

3.2.1. 解答のスピードアップ

全員が常時教材視聴可能であるため、かなりの程度自力解答が可能であった。また、視聴に至るマルチメディア教材を参照しながら行われる受講生同士の教え合いも活発でであったため、理解が促進され、模擬問題の解答スピードが大幅に速くなった。そのため、2級の場合従来は1回の授業時間内に1つの模擬問題しか達成できなかったが、2007年度には、ほぼ全員が2つの模擬問題を達成できるようになった。

その際、結果を紙に印刷して課題提出するように義務づけたことは、到達目標を明確にし、達成感を与えた。日本教育工学会論文誌（Jpn. J. Educ. Technol.）
るうえで有効であったと考えられる。

3.2.2. 疑問点の絞り込み

3級では作業が1枚で、前述した操作技能に関する部分が大半を占めるので、ほとんどの受講生が容易に理解することができた。

3級で操作技能に関する理解がすすんでいるので、2級では操作技能に関する質問が多くなり、平易な関数・計算式に関しても問題はごく少数となった。最終的に、疑問点が複合IF関数（IFとAND/ORもしくはVLOOKUPとの組み合わせ）のみに絞り込まれた。

3.3. 2級の学習プロセス

2007年度の2級の学習プロセスについて考察する。

3級にくらべて作業過程が複雑で所要時間も長くなるために、今後の授業改善のために解答過程を区分して考察することにした。

3.3.1. マルチメディア教材の学習段階

学習状況の観察から、マルチメディア教材を利用した場合には、以下の自然発生的な3段階が見られた。これをフェーズ1〜3とする（表5参照）。

【フェーズ1】・1番目の模擬問題に関する詳細なマルチメディア教材を利用して、基本的な作業手順と関数・計算式を習得する。受講生は自分のペースで学習でき、教員や友人との質問もなく、自力で解くことができる。ただし、教材の分かりやすさ、正確さが理解の決め手になるので、教材制作には工夫が必要である。

【フェーズ2】・1フェーズ1を踏まえて、マルチメディア教材を参照しながら2番目以降の模擬問題を解いていく。理解を定着させる段階である。

【フェーズ3】・模擬問題の5〜6以降を近いになると解答方法に関して基本的な理解ができてくるため、次第に、マルチメディア教材を視聴せずに、自力で解こうとする様子が観察された。

3.3.2. 遽追指導

さらに、検定試験の合格率を向上させるためにはこの取り組みだけでは不十分と考え、次の段階として以下の追加指導（フェーズIV、Vとする、表5参照）を行い、検定試験に臨ませた。

【フェーズIV】・マルチメディア教材を制作した模擬問題1〜13を終了した段階で、過去問題を自力で解かせた。この段階で、検定試験に向けて緊張感を高めていく、それぞれまでの知識を確かなものにしていく。

【フェーズV】・検定試験の直前になると、リハーサルを行って、検定に向けての最終学力チェックを行う。この段階における質問のほとんどが複合IF関数に関するものだったので、模擬問題で出題されている複合IF関数のパターンを分類したプリントを作成し、配布し、短時間の講義を行って理解を深めた。

3.4. マルチメディア教材の検討

3.4.1. 教材の特徴と作成、使用上の留意点

受講生との会話、授業の観察から、次のような留意点を促進したと考えられる。

PC画面キャプチャ時の留意点

①マウスボインタの安定性と移動のなめらかさ・・・マウスボインタの不必要な動揺を避け、移動時には始点から終点までなめらかに動かすことに留意した。これにより視点を動揺させて集中力が低下することのないためである。

②ある操作と次の操作との間の区切りの明確さ・・・教材画面の一時停止を容易に自分の作業画面と交互に見ながらの解答を容易にするためである。

③音声（ナレーション）と操作との同期・・・同期が取れていないと戸惑いが大きく理解しづらいので同期には十分留意した。ただし、キャプチャしながらリアルタイムで録音したので同期しやすかったが、アフレコの場合には十分留意する必要がある。
キャプチャー画面の編集・加工
①マウスやキーボード操作の説明文（テキストボックス，吹き出しなど），キーの写真を付加・初心者の理解を助けるのに有効である。
②関数・計算式の説明文を付加・操作過程を見ながら同時に説明文を読むので理解と記憶の定着が促進されたと考えられる。

次に，教材の利用に関する留意点について述べる。
当初，1～2割の受講生が教員の直接個別指導を求めるが，操作技能に関する質問には教材視聴で自主学習するよう指導した。その結果，全員が自主学習するようになって，機関巡視中に論理的思考力が必要とする問題に絞って回答することができた。

3.4.2 アンケートによる評価
3級受検終了後の2007年7月と2級受検終了後の2008年1月にマルチメディア教材に関するアンケートを実施した。結果を図3～5に示す。回収は，3級終了後35名（100%），2級終了後28名（80%）である。
以下に考察を述べる。
①有用性
図3に示すように，「大いに役立った」の割合が3級終了後でも45.7%あるが，さらに2級終了後には75%へと大幅に増え，また「役に立たなかった」という回答は皆無になった。3級にくらべて2級は難易度が高く解答過程が複雑になるため，いつでも自分で再生視聴できるマルチメディア教材の有用性が増したと考えられる。また，授業中の観察からも，ほとんどの受講生が活発にマルチメディア教材を利用していた。
②音声（ナレーション）の必要性
図4に示すように，「大いに必要」の割合が3級終了後の11.4%から2級終了後の32.1%へと大幅に増え，「必要でない」の割合が22.9%から7.1%へと大幅に減っている。これは3級でキーボード操作やメニュー操作を習得しているので，2級では音声による解説を主にしたこと，解き方が複雑になっているため，音声がより有効であったと考えられる。参考として，音声について言及されている自由記述結果を示す。
＜自由記述＞
●ビデオは何も分らなかった私にとって本当に重要で役に立ちました。しかし，時々分かりづらい時もありましたが，何度も見返して先生の音声なども再聴に頑張りました。
●ビデオ教材はとても便利だと思いました。問題が分からない時でも1から10まで選べる方がのってあって，音声で細かいところまで説明が聞けるのでよかったです。
●本当に先生の作ってくれたビデオには助けられました☆音声もあって見やすくて聞きやすくてとてもとてもわかりやすく，めんどくさいと思っていたエ

日本教育工学会論文誌（Jpn. J. Educ. Technol.）
クセも楽しくできました。また作ってほしいです。
③自由記述回答数
さらに、受講生の意識を反映していると考えられる自由記述回答数を図5に示す。3→2級終了後で10→39と大幅に増え、内容的にも以下のような積極的な意見が多かった。
＜自由記述＞
● 読み聞いても、全然わからないけど、ビデオを見ながらしていくと、だんだんわかってくる。
● ビデオ教材は、とても分かりやすく良いとお思いつしい方もなくす1つ1つ塗っていたので、早く覚えました。
● 教材がある方が関数など分かりやすくすぐ活用したので、これからも使った方が良いと思います。
● 自分のベースで進められるのでとてもよかったと思います、助かりました。
● 検定の試験も授業に取り入れているので、資格もとれて良かったです、先生のビデオは最高にわかります。
● ビデオがないとほとんど困って先に聞きならないところがありませんからほとんどあたって助かりました。

3.4.3 問題点と改善策
マルチメディア教材に関しては、自由記述において問題点も指摘されているので、それを踏まえた改善の検討を以下に示す。
①再生速度の問題
＜自由記述＞
● あたしにとっては、説明のスピーディーが少し遅いかなと思っています。
この記述とは逆に、理解の遅い受講生からは現在のもと速すぎるという声があった。この問題を解決するには、再生ソフトで速度を下げるべきか、現在利用している汎用のフリーソフト（Windows Media PlayerやReal Playerなど）は音楽・映像用のものであり、十分でない。今後、マルチメディア教材再生に特化した大幅な速度調節可能なソフトが必要である。
②ナレーションの音質改善
＜自由記述＞
● もうちょっとビデオの声を大きくしたほうがよいと思います。
● ビデオ教材の音でやり方を覚えることができたので、もう少し音声を分かりやすく入れたらもっといいと思いました。
2級の当初の教材において、録音状態が悪くナレーションの音声が不明瞭であった。また、ボリュームをかなり上げないと聞きこえにくいという問題もあるので、このような記述がなされたと考えられる。今後、録音方法を改善して音質を向上させる必要がある。
③論理的思考力に対応した教材の必要性
＜自由記述＞
● わかりにくい難しい式の所や、うっかりした間違いをしそんなところはわかりやすく教えてほしい。
● なぜこの式を使うのかなどの説明も入ったらもっとわかりやすいと思います。
● なんでこの時にこうするかなどの意味も教えてほしいです。
● 計算式などどこで使うか、いまいち分からない所があるので、分かりやすく説明してほしい。
● 検定前にIF文などのプリントをもらってとてもよかったです、ビデオ教材やIF文などのプリントがすごい役に立ちました。
● IF文難しい問題はまた別にわかりやすい教材を作ってくださると嬉しいです、2級も合格できたのでできれば1級も取れたぐらいと思います。
以上のように、論理的思考力に対応した教材の待望する声が多い。今後、関数・計算式や作表手順などに関する教材が上位級になるほど必要と考えられるので、なおいっそう教材の充実をはかっていく必要がある。

4.まとめ
本研究の目的は、SPの習得を課題とする授業の改善である。動機づけとして検定試験の合格を目指していこうので、検定模擬問題のマルチメディア教材を独自に制作して、授業で利用し、以下の結論を得た。
(1)3級、2級ともマルチメディア教材の利用によって検定合格率が大幅に向上し、授業改善が達成された。
日本の情報処理検定協会（2006）発行8年版技術検定問題集 日本情報処理検定協会 愛知安岡広志、横澤美紀（2007）情報基礎教育指針は正しいにおける理解度トレーニングシステムの試み。平成19年度全国大学IT活用教育方法研究発表会予稿集:62-63

Summary

For the purpose of improvement of an instruction for spreadsheet skills acquisition, I developed the multimedia teaching materials and used them in class. I requested the students who enrolled in the class to take the third and the second grade of the spreadsheet certificate examination by JAPAN TESTING ASSOCIATION to motivate them.

The materials are the movie files which include the captured movies showing correct answers of the training tests for the examination on a PC screen with narration, photos and text boxes.

In the class the students self-learned the materials and asked their questions to the instructor individually.

As a result, the ratio of the successful applicants for the certification examination increased from the conventional data around 80% to 96.1% with the third grade and from the conventional data around 40% to 77.1% with the second grade. In the class the numbers of student’s questions asked were decreased so much and the time of the exercise period was remarkably shortened. Furthermore, all the students replied that the teaching materials were very effective or effective to the questionnaire that I carried out after finishing this course.

KEY WORDS: SPREADSHEET, IMPROVEMENT OF INSTRUCTION, CERTIFICATE EXAMINATION, MULTIMEDIA TEACHING MATERIALS, SELF-LEARNING

（Received January 28, 2008）