情報系専門科目を実施可能なアクティブラーニング環境の構築

近藤秀樹*1・田川真樹*2・橋原弘之*3
九州工業大学学習教育センター*1・九州工業大学情報工学部*2・九州工業大学大学院情報工学研究院*3

本論文は、プログラミングをはじめとする情報系専門科目を実施可能なアクティブラーニング環境の構築について述べる。情報系専門科目をアクティブラーニング可能な空間で実施する意義は大きいと考えられる。しかし授業で利用する機材等の都合上、PC の利用のために整備された実験室等で実施されることが多かった。機能の十分なコンピュータを利用しながら、ペアやグループでの活動を行うことは容易ではなかった。本研究では情報系専門科目を実施可能なアクティブラーニング空間の要件を整理し、「空間利用の柔軟性を損なわない ICT」「速度と反応性と構成管理のバランス」授業と密接に連携できる運用と保守性の 3 点にまとめた。それらを実現するためのテクノロジーについて検討し、情報系専門科目を実施できる教室 MILAis を設計・構築した。3 年間の授業事例から、情報系専門科目が実施可能であり、多様な授業も実践可能であることを示した。

キーワード: 学習環帯デザイン、アクティブラーニング、情報系専門科目、PBL、協調学習

1. はじめに
アクティブラーニングのための学習空間(以下、アクティブラーニング空間と表記)がこれまでに整備されてきた。物理学の授業を伝統的な講義型からアクティブラーニング型に転換するために、ICT による授業支援(デスクトップ実験)が組み込まれた教室 TEAL が整備された(DORI and BELCHER 2003)。また特定の領域に限定せず、教養科目全般的授業を広く実施するために多様な教育スタイルに対応した柔軟な空間として KALS が整備された(山内ほか 2007)。同一の学習空間の中で多様な学習スタイルが実施されることが示された(林 2010)

*2014年2月5日受理

†Hideki KONDO*1, Masaki TAGAWA*2 and Hiroyuki NARAHARA*3 : Building of an Active Learning Environment which can Conduct Advanced Information System Subjects.

*1 Learning and Teaching Center, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka, 820-8502 Japan
*2 Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka, 820-8502 Japan
*3 Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka, 820-8502 Japan

Vol. 38, No. 3 (2014)
2. 既存の専門科目の授業と学習空間

大学の工学分野で扱われる専門科目の内容は幅広い。本稿では、以下の2つの条件に合致する授業を「情報系専門科目」と呼ぶことにする。

(1) コンピュータシステムそのものの理解やコンピュータを活用した応用システムに関する理解を獲得することが目的の授業

(2) コンピュータによるシミュレーション等を活用して異なる分野の理解を獲得することが目的の授業

前者は、プログラミング言語を習得したり、ロボットの構築を行う授業などが該当する。後者は、統計処理や数式の視覚化、高度なデータベースの利用を前提とした授業などが該当する。

2.1. 既存の情報系専門科目の多様性

情報系専門科目の授業内容は多様である。用いられるプログラミング言語（Java, Arduino Sketch）も、目的とする領域（PC、組み込み機器、クラウド）も、利用されるツール（プラグイン、データベース、コマンド）や活動の基盤となるOS（Windows, Mac, Linux, FreeBSD）も、授業ごとに異なっている。そしてその多くが単にコンピュータがあればよいということでなく、技術的に高度なICT環境を前提としている。

2.2. 既存の学習空間の実態

情報系専門科目のための学習環境として、従来は実験室や演習室が整備され、利用されてきた。こうした環境の特徴を次に示す。

2.2.1. デスクトップPC

一人一台のデスクトップPCが恒久的に握えつけられており、学習者はその前に座って一人でコンピュータを利用するスタイルが一般的である。机の上には画面・キーボード・マウスなどが置かれており、それ以外のスペースはそれほど広くはなく、個人の身体的な都合に合わせて調整するために、それらのレイアウトには多少の自由度があることもある。

実験室や演習室でデスクトップPCが選択される理由は次の通りである。

(1) 構成変更と価格性能比

一般に、デスクトップPCは標準的な部品で構成されているため、ハードウェア構成を変更できることが多い。計画される授業内容にフィットするよう発注時、ハードウェアを構成することで、無駄な性能を持たず、授業にフィットするものを購入することができる。またノートPCなどに比べて価格性能比が高いという特徴もある。必修科目をカバーするには安価であるという特徴も重要である。

(2) 専門的なソフトウェアを動かせる

情報系専門科目を実践するためには、単にウェブブラウザやオフィススイートが動作するだけでは十分でない、プログラミングのための統合開発環境や組み込み機器用のツールなど、専門的で特殊なソフトウェアが動作しなければならない。多くのソフトウェアはPC用のOS上で動作するものであり、タブレットやスマートデバイス用のOS上では動作しない。そのため、汎用のPCを導入することが必要である。

2.2.2. 統一的な環境の構築と提供

教室内のどのPCでも授業で利用できるよう、すべてのPCで統一された環境が提供される。ここでの環境は、操作に利用するOSやインタースルされていっているアプライケーションだけでなく、学習者が自分のファイルにアクセスをできるものを含む。個人の設定も保存されるため、どのPCでもログインしても、まったく同じ環境が再現され、個々のPCごとの違いが意識されないように配慮される。

環境の統一性は、単にOSやアプライケーションが同じというだけでなく、バージョンや適用されているセキュリティパッチ、各種設定やファイルの配置などの細部までに及ぶ。また、一般的な利用ではここまでの統一性は必要かもしれないが、情報系専門科目にはこのレベルの統一性が必要である。たとえばプログラムグでは、利用するソフトウェアの新旧なバージョンの違いによってシステムの挙動が大きく変わり、授業の進行を妨げるためである。

すべてのPCに環境をセットアップしていくというような朴素な手段では、細部にまで一一致するような環境を提供することは不可能に近い。またも実現したとしても、学習者の利用に伴って環境が変化してしま
う。素朴な手段のかわりに NetBoot 技術が用いられることが少なくない。システムをサーバ上に一つだけ構築しておき、個々の PC がネットワーク越しに中央の環境を逐次参照しながら動作する技術である。OS もアプリケーションも学習者のファイルも、すべて中央に存在する。個々の PC はハードディスクを持たないか、あるいは搭載していても利用しない。学習者が電源を投入した直後から、ネットワーク経由で読み出して OS を起動し、以降のすべての操作もサーバ上からデータを読み込む・サーバ上にデータを書き込むことで行われる。サーバ上の環境は全ての PC から共有されているため、管理者がその環境を更新すれば、すべての PC の動作が一様に更新されることになる、原理的に統一的な環境が提供できることが保証される。

2.2.3. 項目部署による保守
個々の PC の環境構築や動作のために必要なサーバの設定、ネットワークの構成設定などの保守作業は、授業担当教員と連携しつつ、独立した専門の部署が保守・運用を担当する。作業にあたって高度な技術と専門知識、経験が要求されることと、各種の設備を集約して経済的・効率的に運用する必要があることがその理由である。

PC の環境の構築にあたっては、学期の開始よりも前に授業担当教員からの要望をヒアリングする、その上で実施する授業すべてをカバーできる統一的な環境の設計を行い、動作を検証のうえで授業に引き渡す。授業開始後に問題が発生した場合、授業担当教員からのエスカレーションを受けて部署として対応を検討・実施し、再度授業での利用に問題がなく正しく解決できたかを検証して配備する。

3. 情報系専門科目のためのデザイン原則と設計要件

2 章では既存の情報系専門科目の多様性と実施のための技術的特徴について述べたが、こうした特徴をアクティブラーニングのための空間に単純に導入することは難しい。情報系専門科目の学習活動とその背景から適切なデザイン原則を導き、原則に基づく設計要件を検討する必要がある。本研究では情報系専門科目で実践される活動を想定し、下記の 2 つの原則を採用した。

原則 1. 学びの責任が学び手にある
現代において、学習についての責任が学習者自身に戻ろうとしている(コリンズ・ハルバーソン 2012)ことから、よりよい学びを実現するためには、学習者が自身で教育をカスタマイズすることが重要になる。たとえばさまざまなカリキュラムや教材やサービスをカスタマイズすることが検討されているが、学習者のカスタマイズの範囲はそれだけに限定されるものではない。情報系専門科目を実施するための環境は、物理的な環境とはなりカスタマイズが容易であるため、学習環境そのものの構築や改善も、学習者自身によるカスタマイズの対象となりうる。

原则 2. 活動の途中のプロセスを積極的に他者と共有する
他者と簡単で学習を進めるには、互いの活動のプロセスが積極的に共有される必要がある。たとえばアプリケーションは、二人がプログラミング活動そのものを細かく議論しながら進める活動である。そのプロセスは非常に密接であり、活動そのものを二人で実施するため、互いに適切に活動が共有される環境が不可欠である。そして活動の途中のプロセスを積極的に共有しなければならないのは、プログラミングだけに限らない。このため情報系専門科目が利用する技術は、積極的に他者と活動のプロセスを共有しやすいように検討されなければならない。

この二つの原則に基づき、アクティブラーニング空間への ICT 導入に関する設計要件を下記のように検討した。

設計要件 1：授業と密接に連携できる運用と保守性 (原則 1 より)
設計要件 2：空間利用の柔軟性を損なわない ICT (原則 2 より)
設計要件 3：速度と反応性と構成管理のバランス (原則 1, 2 を実用的に実現すること)

以下にこれらの要件について説明する。

3.1. 授業と密接に連携できる運用と保守性
教室全体がスピーディでよりよく変化できるよう、授業担当教員の判断や運用者レベルで改修・保守が必要な、保守性の高い技術を用いるべきである。アクティブラーニング型の授業は綿密に計画した通りに進むというよりは創発的な要素が強く、授業の進行を考慮して環境を整備・更新できることが望ましいこと、また学期の途中であっても授業にとって有益な技術を導入できることが望ましいことがその理由である。

アクティブラーニングを実施する空間とそこで利用される ICT 環境に関しては、現場の運営担当者によっ
て保守可能な技術を用いて、授業内容や進捗などと密接に連携した運用体制を確立することが望ましい。

3.2. 空間利用の柔軟性を損なわないICT

単にこれまで通り、価格性能比などの理由だけでデスクトップPCをアクティブラーニング空間に導入するとき、空間利用の柔軟性が損なわれる。アクティブラーニング空間の持つ空間利用の柔軟性を損なわないようなICTの導入が必要である。

3.2.1. 固定的でなく再配置可能な設備

従来の演習室や実験室では、一人一台のコンピュータを利用することこそが主たる目的であったために、価格性能比に基づいてデスクトップ型のPCを恒久的に据え付け固定していた。しかしアクティブラーニング空間で行われる活動はそうではない。学習者はコンピュータの利用だけでなく終始変わるわけではなく、活動に合わせて移動したり、什器を再配置したりしながら、多様な方法で多くの人とのインタラクションを行う。このような活動を行う空間に対してPCを恒久的に設置すると、画面と本体が空間を占有することから学習者同士のインタラクションを制限する。対面する他者と話したい場合に、設備の存在がそれを阻害する。またディスプレイを指し示しながら議論したくても、モニタの可動範囲はせいせい隣の人間に見える範囲に過ぎない。

アクティブラーニング空間の多くは什器が再配置可能であるから、ICT設備も再配置可能であることが望ましい。利用しない場面では設備そのものを収納してしまい、広く他の活動のために空間を開放できることが望ましい。

3.2.2. 小型軽量で気軽に持ち運び可能

空間利用の柔軟性を損なわず、ICT設備を気軽に持ち運び可能とするために、ICT設備は小型軽量であることが望ましい。

アクティブラーニング空間では、学習者が移動することも少なくない。その際、利用しているPCをそのまま持ち歩き、移動先で利用しながら活動できることが望ましい。たとえばダイナミックジグソー法では授業中に何度も場所を変わる。自分の担当資料を持っていて説明し、また相手の説明を受け、メモを取り、質問をし、元のグループに戻る。こうした授業スタイルでは、コンピュータも同時に随伴できる、小型・軽量のものであることが価値を持つ。プロジェクトではこの傾向はより顕著になる。他者とコードを見ながらレビューしたり、TAや教員と議論することとが珍しいことではないが、自分の活動の成果や途中経過をそのまま他者に容易に提示できなければ、効果的と言えない。

3.2.3. 可能な限りケーブルを排除

ICT設備を持ち運び可能とする際、ケーブルがネットワークとなる、そのため設備の利用するケーブルを可能な限り排除することが望ましい。

デスクトップPCは、正しく動作するために多くの配線を必要とする。ディスプレイ、ネットワーク、電源、キーボード、マウスなどである。このうちネットワークと電源は稼働中に抜挿することが難しい。事実上この2本のケーブルが必要であり、これらによって持ち運びが制限され、学習者の活動が妨げられる。

またプロジェクタを利用してプレゼンテーションを行うとする際には、学習者が利用しているPCをプロジェクタにつながないか、PCの利用を中断して別途プロジェクタに接続されたPCまで移動する必要がある。このこともアクティブラーニング空間が実現する空間利用の柔軟性を妨げる要因である。可能な限りケーブルを排除することが望ましい。

3.3. 速度と反応性と構成管理のバランス

複数のPCが存在する場合、どれを使っても同じように学習者が利用できることが望ましいことは、既存の演習室や実験室の場合と変わらない。しかし、単に中央で環境を集約する構成では、専門的な環境を十分な性能では実現できないことがある。速度と反応性と構成管理について、学習者の活動に合わせて適切なバランスを検討しなければならない。少なくとも下記の2点を検討する必要がある。

3.3.1. 授業や活動を妨げない性能の確保

構成管理コストを抑制しつつ、専門科目を適切に実施するだけでPCの性能を確保することは言うまでもないが、構成管理に用いる技術とトードオフの関係にある。構成管理のための技術と確保できる性能のバランスを吟味する必要がある。

たとえば、これまで用いられてきたNetBoot技術は、個々のPCの環境を一様に保つための管理コストを抑制するうえで非常に高い効果があるものの、その技術的な特性上、個々のPCの性能を十分に活用できず、授業の内容によっては学習者の活動をサポートできないことがある。標準的なNetBoot技術を授業で利用した場合、コンピュータを起動して利用を始めるのに5分以上かかることも珍しくないが、50台程度であっても5分近くかかる事例が示されている(浜元ほか2011)。

日本教育工学会論文誌(Jpn. J. Educ. Technol.)
3.3.2 特殊な構成を管理する柔軟性
個々の PC の環境を一緒に保ちつつも、授業の要請によっても特殊な構成をサポートする必要性がある。たとえばライセンス数の限られた商用ソフトウェアを少数だけ導入するような場合である。ソフトウェアによっては起動している数で管理されるものもあるが、インストールできる数で制限されるものもある。この場合、購入したライセンス数が少ないため、すべての PC にインストールするわけではない。しかしソフトウェアをインストールした PC でない PC を区別して対応することは、管理コストを著しく押上げるうえに、学習者にとっても負担となる。前項で述べたように性能を確保しつつも、一様な環境と特殊な構成とを柔軟に構築し、学習者にとっても不快なく利用できる必要がある。

3.4 設計要件の整理
情報系専門科目を実施するために、アクティブラーニング空間への ICT の導入を検討した。既存のアクティブラーニング空間の特徴を損なわないための ICT の設計要件について、以下の 3 項目に整理した。

- 空間利用の柔軟性を損なわない ICT
- 速度と反応性と構成管理のバランス
- 授業と密接に連携できる運用と保守性

4. インタラクティブ学習棟 MILAiS
前章までで、情報系専門科目的授業形態と学習者の活動を検討し、アクティブラーニング空間への ICT の導入の際の設計要件を検討した。本章ではこれらの設計要件に従い、著者の所属する工業大学において、実際にグループワークのための学習空間「インタラクティブ学習棟 MILAiS」(以下、MILAiS と表記する)を設計・建設した。以下に施設全体の概要を述べ、選定した機器・設備と空間配置について述べる。

4.1 施設の詳細
MILAiS はプレハブ工法で建設された平屋の施設で
あり、建設した施設のフロアレイアウト（図1）及びインテリア（図2）を示す。
施設のもっとも広い領域が実際に授業を実施する教室部分である、約22m×約12m、約260㎡を占める。この広さは建設時点でフレキシブルな工法で視界を遮るような柱を設けずに建設できる最大の面積である。授業中などに、学習者が活動を中断して教室から外に出る頻度を低くするよう、トイレを備えている。教室部分に隣接する形で、スタッフルーム、サーバルーム、倉庫が配置されている。
教室部分は透明なパーテーションで二つの教室に分割（図3）することができる。
パーテーションが透明なため、一方で授業を実施しつつ他方からその内容を観察・味わしたり、関連する二つの授業を同時に実施してい互いの活動をショーケース化するいった利用が可能である。
定員は90名で、1グループ6名を15グループ配置する状態を標準としている。追加の席位を配置することで110名まで着席可能である。
床面には24ヶ所のコンセントが埋め込まれており、各グループごとに有線LANと電源が利用できるよう配置されている。
教室内部を取り囲むよう、プロジェクタとスクリーンが備え付けられている。2面を並べて一組として、4組8面である。プロジェクタはフルデジタル映像スイッチに接続されている。映像スイッチの入出力は柔軟に組み合わせを変更できる、なんらかの手段で映像スイッチに映像信号を入力し続ければ、どのプロジェクタにもどんな組み合わせでも出力できる。8面すべてを同じ映像にすることも、まったく異なる映像にすることも可能である。映像スイッチへの入力端子は教室内に分散して3ヶ所用意しており、それぞれの場所から書画カメラやPCなどを接続できる。
天井には、ほぼすべてのグループについてウェブカメラを埋め込んだ。ネットワーク越しにグループでの活動を見下ろす形で記録することができる。

4.2. 運用体制
MILAISには運用を担当するスタッフが常駐しており、日々の運用業務を担当している。スタッフの構成は、専任教員1名、業務支援職員1名、学生アルバイト（学生スタッフ）15名である。授業が実施されていない時間帯は、ラーニングコモンズとして学生に開放している。ラーニングコモンズという表現は図書館と関連して用いられることが少なくない。MILAISは図書館ではないものの、単なる自習のために開放するではなく、複数の学生が集まって互いに交流し議論や多様な活動を進めるという側面を強調するという意味で、本稿では「ラーニングコモンズとして開放する」という表現を用いる。

4.2.1. 学生スタッフの業務
運用実務は基本的に学生アルバイトが担当し、教員と職員がそれを監督しつつ管理業務も行う。学生スタッフは各自が自分の担当時間枠を受け持つ、その時間の業務を実施する。主な業務内容は次の通りである。
(1) 授業準備と片付け
(2) 学習者への機材貸し出し
(3) ラーニングコモンズ管理
(4) ICTシステムと運営制度の改善
また各シフト担当時間以外に、週1コマ程度のゼミを研修として実施する。学習科学や教育工学、認知科学、情報工学に関連するトピックを対象とする。

4.2.2. 授業の割り当て
MILAISでの授業は、個々の授業担当教員の自発的な要望に基づいて実施される。そのプロセスは以下のようなものである。
(1) MILAISでの授業実践を希望する教員は、他の特殊教室と同様、年度末に次年度の教室利用の要望を教務係に提出する。
(2) 教務係は授業カテゴリーと優先度にしたがって調査を行い、教室を割り当てて割り当てる。
(3) 割り当てられた時間帯をMILAISの運営スタッフと共有し、実施に問題がないことを確認する。
(4) 時間帯を正式に決定し、MILAISでの授業が割り当てられる。

日本教育工学会論文集（Jpn. J. Educ. Technol.）
上の通り、このプロセスは教員から開始されるものである。MILAISの運営側から授業実施を依頼したり、学科ごとにノルマを課すよう働きかける等の強制性はない。

4.3. 導入機器の選定
抽出した設計要件にしたがい、具体的な機器や物品を選定した。また選定した物品のユースケースを検討し、建物そのものの空間設計や配置を決定した。以下に選定した物品について説明し、その理由を示す。

4.3.1. 仕 器
活動の内容に合わせて、学習者が利用する仕器の空間配置を柔軟に変更可能とした。アクティブブラーニング空間の特徴を継承している、多様なグループ構成での活動を実現するために、勾玉テーブルを採用した。また、議論に欠かせないホワイトボードを教室のどこでも利用できるように、イーゼル型のホワイトボード（図4）を採用し、互換性のあるボードをすべての壁面にも配置（図5）した。

4.3.2. ノート型PC
情報系専門科目を実施するためのコンピュータとして、1人1台のノート型PCで環境を構築することとし、MacBook Airを選定した。これにより、アクティブブラーニング空間での設計要件のうち「空間利用の柔軟性を損わない」ことを充足できる。MILAISの定員は90名を超えていたため、約100台を導入した。
ノート型PCはデスクトップ型PCと異なり、小型・軽量でパッケージ化可能なため「固定的でなく再配置可能な設備」「小型軽量で気軽に持ち運び可能」の設計要件を満たす。なかでもMacBook Airは、最新・最速の無線LAN機能（選定時）を用いながらパッケージだけで6時間（コマに相当）の稼働時間を確保していることから、電源もネットワークもケーブルを接続しないため、機体だけの状態で動作し「可能な限りケーブルを排除」できる設計要件も満たしている。
さらに、ハードディスクでなく高性能のSolid-state Drive（以下、SSDと表記）を利用する機種であるため、3.2.2で示した設計要件「小型軽量で気軽に持ち運び可能」と3.3.1で示した設計要件「授業や活動を妨げない性能の確保」を満たす。SSDベースのコンピュータは、HDDベースのコンピュータに比べて小型軽量で高速に動作し、ノートPCの性能と持ち運び利用時の耐久性を飛躍的に高めるためである。
また、NetBoot技術やNetRestore技術（後述）を標準でサポートしているため、追加コストなしに多様な構成管理手法が選択できる。
MILAISの運営に携わる学生にとって、隅々まで動作を把握しやすくなり、またベンダーの技術サポートが充実しているUNIXベースの商用OSで動作していることも選定ポイントである。学生が普段から、大学の演習室でUNIXベースの環境を利用しているためである。学生は授業で学んだ技術を応用してICT環境を構築したり、自身がMILAISで授業を受けた経験から環境を継続的に維持・保守・改善していく活動がやりやすくなる。この点が3.1に述べた「授業と密接に連携できる運用と保守性」に対応する。

4.3.3. NetRestore
PCの環境を統一的に扱うために、NetBootでなくNetRestore技術を採用した。NetBootと同等の構成管理を実現しながら性能を向上させるためである。

Vol. 38, No. 3 (2014)
NetRestore技術は、あらかじめ構築しておいた環境を個々のPCのSSDに予めコピーしておき、各PCはそのコピーを使って動作する手法である。NetBootがサーバ上の1つのコピーをすべてのPCから同時にアクセスするのに対して、NetRestoreは個々のPCで環境が完結していることが特徴である。

このため、すべてのMacBook Airに対してあらかじめ環境をコピーするという作業が発生する。これを念ると、一様な環境という制約を満たせなくなる。これはNetBootでは不要であった作業である。しかしながら、個々のPCが備えている能力を活用できるようになるため、飛躍的に性能が向上する。またネットワークへの負担も減するため、有線ネットワークよりも帯域や安定性の限られる無線LANを利用する状況においては、NetBootよりも適している。

4.3.4. 大規模仮想化基盤
通常のサーバコンピュータと比べても強力な、大規模な仮想化サーバを採用した、導入した機材の性能を以下に示す。

<table>
<thead>
<tr>
<th>仮想化サーバ</th>
<th>Oracle Sun Fire X4470</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU数</td>
<td>16, 32スレッド</td>
</tr>
<tr>
<td>主メモリ</td>
<td>256GB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ストレージサーバの性能</th>
</tr>
</thead>
<tbody>
<tr>
<td>仮想化サーバ</td>
</tr>
<tr>
<td>CPU数</td>
</tr>
<tr>
<td>主メモリ</td>
</tr>
<tr>
<td>ディスク容量</td>
</tr>
</tbody>
</table>

このサーバに対して、30台程度のコンピュータを仮想化して収容することを想定している。用途はMILAISのネットワークそのものを維持するための各種サービス（DNSやDHCP、ルータ機能など）を実行すること、MacBook Airでは動作させることが現実的ではない特殊なソフトウェアを走らせるためである。このことは設計要件である「授業と密接に連携できる運用と保守性」と「授業で利用する特殊な構成の環境を柔軟に構築する」とに対応する。

このサーバ機は一般的なサーバと比較して多くのCPUやメモリを搭載することで、仮想化技術の動作に十分耐えうるように構築されたサーバ機である。この1台の物理的なサーバの中に、何台ものコンピュータを必要としない仮想的に作り上げることができる。

図6 仮想化基盤とThinClient利⽤の関係

ここで作り出された仮想コンピュータは物理的なコンピュータと互換性があるため、物理的なコンピュータと同様のOSを導入し、ソフトウェアを作動させることができる。このため、MacBook Airでは実現が困難なWindows環境なども構築しMac OS Xと同時に利用できる。

また、全ての仮想コンピュータは互いを隔離することができるため、どんな環境を構築しても他の仮想コンピュータに影響を及ぼさない。動作している環境を複製して実行することと合わせて、授業環境を気軽に更新して検証することもできるようになる。

前項で述べたNetRestore技術と組み合わせることによって、高性能で統一された環境を大量のPCに配備しつつ、特殊な環境を必要な数だけ確保できる。そして個々のPCを一種のThinClientとして機能させることにより、学習者はこの二つの環境を同時に利用可能になる（図6）。

仮想化基盤へのアクセスは、反応性などの面で手元のノート型PCには一段劣る。しかし一様環境と特定少数の環境をを両立できる点で採用に値する。

4.3.5. 無線LAN及びプロジェクタの密接な統合
教室内のプロジェクタへ無線LANから映像信号を入力するためにApple TVを採用した。教室内の映像スイッチに接続し、Apple TVの映像出力がプロジェクタに投影されるようになっている。

Apple TVは映像や音楽を配信するための機器として販売されているが、同時にMacBook AirやiPad等の画面を受信して表示する機能をサポートしている。この機能は標準状態のMacBook Airからも動作するもので、非常に簡単な操作で映像の出力先をApple TVに変更することができる。結果として、MILAIS内でMacBook Air
を利用する誰もが、ケーブルのつなぎ替えや接続端子への席の移動なしに、自分の画面上をプロジェクタに投影できる。教室内にはすべての壁面をカバーするように8台のプロジェクタが揃え付けられているため、結果として、教室内のどこにおいても、どのスクリーンにも、移動することなく自分の画面を表示することができる。

5. 運用結果

MILAisの設置されたキャンパスは、1学部5学科と共通教育（人間科学系）から成り立っている。各学科とも、1学年あたりの定員は約100名である。4学年で2000名程度の規模である。

本章では、MILAisの竣工から約3年（2011年4月から2014年1月）の授業運用の結果について述べる。

5.1 授業の運用実績

3年間にわたり、全部で42科目が実施された。これは授業名によって区別した、演習科目とセットになっている場合は、1つとして数えた。これらの授業について、その内容を「専門分野共通教育か」「コンピュータを前提とするかどうか」の2軸で4カテゴリーに分類した。その分類基準は以下の通りである。

人間科学系所属の教員が担当する授業は「共通教育」とする。そうでない授業を「専門分野」とする。

また、授業において、以下のことを「コンピュータを前提とする」授業とする。

(1) MILAisのコンピュータのアクセスを発行した場合
(2) 年度に発行されたアクセスの利用を前提とした場合
(3) 授業実施教員の準備したコンピュータを持つ場合

これらの条件は授業のためにコンピュータが必要不可欠であることを示すもので、2章で述べた情報系専門科目の定義を満たす。上記以外の場合は、たとえば授業においてコンピュータの利用が見られたとしても、もっぱら個人が自身のコンピュータを持ち込んだ場合では「コンピュータを前提とする」授業とは分類しない。これらの基準に沿って授業を4分類し、カテゴリーごとの数と内訳を表3に示す。

5.2 授業実践の学習活動

授業が十分に実施できたかどうか、また授業実践がICT設備や運用保守体制がデザイン原则によって支えられているかを確かめるアンケートを実施した。質問内容は「授業スタイル」「機器や学習資源の利用」「ICT設備」「運用保守体制」の4項目である。それぞれの項目については、授業の過程を含めて十分に調査を施した。

授業実践評価は、授業と2013年度の授業とを比較して、授業形態を変えて、あるいは変えてどうだったかを示す。

授業実践評価では、授業と2013年度の授業とを比較して、授業形態を変えて、あるいは変えてどうだったかを示す。
2010年以前の授業と2013年度の授業とを比較して、授業中の教室内での授業の振るまい方や役割は変わりましたか？
(a) 変わった 10件
(b) 変わらなかった 2件
※うち1件が比較対象授業なし

ICT設備について
回答のあったアンケート12件のうち、情報システムを利用しなかった授業が3件あるため、「ICT設備について」および「運用・保守・更新体制について」は母数が9件である。
MacBook Air をはじめとする情報システムが利用できますが、その利用を前提として、授業の内容を2010年以前から変更しましたか？
(a) 変えたところがある 3件
(b) 特に変更しなかった 2件
(c) その他 4件
MacBook Air 等の情報システムの使い勝手は、実践した授業のために適していると思われますか？
(a) 十分適している 5件
(b) 部分的に適している 4件
(c) 適しているとも適していないとも言うえない 0件
(d) あまり適さない 0件
(e) 授業にさしつかえると感じられる 0件
(f) その他 0件

運用・保守・更新体制について
MacBook Air のアカウント発行手続きは授業間に合いましたか？
(a) 授業に十分に間に合った 6件
(b) 間に合が、スケジュールがタイトだった 0件
(c) 事前に依頼したが間に合わなかった 0件
(d) その他 3件
授業に合わせて、追加のソフトウェアのインストールやバージョンアップ作業を行っていましたが、御要望や障害・問題への対応は授業に間に合わなかったか？
(a) 授業中に十分享に合った 5件
(b) 間に合ったが、スケジュールがタイトだった 1件
(c) 事前に依頼したが間に合わなかった 0件
(d) その他 3件
MacBook Air にインストールしていない、あるいは Macに対応していない Windows 用のソフトウェアも仮想化環境で実行できるよう対応していましたが、授業の要件を満たすことができましたか？
(a) 授業で実際に利用できた 5件
(b) 授業で利用できただけ、改善の余地がある 0件
(c) 授業計画を実施できなかった 0件
(d) その他 4件

5.3. 授業実践事例
3年間に実施された授業実戦のうち、技術的要件から特徴的であった授業を2例挙げる。

5.3.1. オブジェクト指向プログラミング
Java を利用したオブジェクト指向プログラミングを学ぶ授業が実施された。ある学科の2年生向けに開講される半期の必修の授業である。毎年約100名が受講する。演習を含むため、毎週連続した2コマが実施される。NetBeans と呼ばれる統合開発環境を利用し、授業内容は毎年最新の技術に基づくものへと更新される。
授業開始時、あるいは教員が指示したタイミングで MacBook Air の貸し出しを行う。利用で終わったら返却を受け付ける。100名が次々に利用を開始することは変更があり、電源投入から数十秒でログインが可能になり、ワーストケースでも1分30秒で全員のログインが完了した作業可能になった。
貸し出し中の MacBook Air はパッテリーのみで動作しているが、ほとんどの場合、2コマ連続の利用に問題はない。故意にパッテリーを済ませたり、負荷の高いソフトウェアを動かしたり、授業に関係ない動画を連続再生するなどの負荷をかけると電力が足りなくなることがあったが、その場合は充電しておいた予備機と交換することで対応した。回収した機体は即座に充電を行った。
授業中の利用という事情から、動作の安定性を確保するためにネットワークだけは有線 LAN に接続する
よう案内しているが、基本的には無線 LAN でも動作に支障はない。事実、有線 LAN を接続するような指導しても無線 LAN で利用する学生があつをたなかった。そうした学生はグループから出て積極的にコンピュータを持ち歩き、TA や教員、別のグループの仲間のところに出向いて教えを求めるなどの活動が継続的に見られた。無線 LAN が不安定になり動作に問題が生じてもこうした利用形態は途絶えることがなかった。

有線 LAN 接続時でも、ノート PC 画面を対面に座ったメンバーに見るように移動・回転させるなど、デスクトップ型 PC では困難な対話的な利用方法が見られた。

講義中の資料や教員によるデモ画面は、教室内のすべてのスクリーンに提示された。板書が必要な場合、見通しの悪い壁面ホワイトボードではなく、紙への書き込みを書画カメラで撮影してスクリーンに投影する形で行われた。

5.3.2 メカトロ材料学

機械材料に関する知識を学ぶ授業が実施された。ある学科の 3 年生向けに開講される半期の選択科目である。毎年 30 名程度が受講する。毎週 1 コマで Team-based Learning による授業が実施される。ダイナミックジグソーの様式を取り入れ、授業時間を通じて多様な活動のフェーズがある。

商用の材料データベースを利用する。これは Windows で動作するソフトウェアであり、そのままでは MacBook Air では動作しない。また高額なため、受講生に合わせて必要最小限の 10 ライセンスだけを購入している。

こうした条件のため、仮想化サーバ内に特殊な環境を構築して対応した。MacBook Air ではなく仮想化サーバ内に仮想の Windows マシンを 10 台整備し、その上に材料データベースをインストールした。受講生は、仮想コンピュータの画面だけを Macbook Air に転送することで、Mac OS X と Windows ををあたかも同時に利用しているかのような体験を得る。

ダイナミックジグソーの様式を取り入れているため、移動した先で材料データベースを駆使することもあるが、その場合でも MacBook Air を持って移動し、ジグソーを行ったのち、元のグループに戻るという一連の活動が可能であった。

5.4. 保守やモデルチェンジへの対応

MILAIS に導入した機器や設備の選定、およびシステムの構築から保守・管理まで、基本的に学生を交えてスタッフのみで行った。非常に特殊な産業用の装置や、基盤となるケーブルの埋め込み、ラックへの機器搭載については担当者が建築時に同時に施工を行ったものの、ネットワーク構成の設計や基盤ソフトウェアの設定等、基礎的な部分から運営スタッフの手による。

3 年間を通じて担当した主な保守・管理作業を以下に示す。

(1) OS のバージョンアップ

3 年間を通じて、MacBook Air の OS のメジャーバージョンアップを長期休暇中に 2 回、マイナーバージョンアップは学期中でもそのたびに実施した。そのまま単純に OS を入れ替えるだけではすまないため、検証を行いつつ、その都度、問題に対処した。

(2) 授業の進度や現状に合わせた環境更新

プログラミングに用いる開発環境を学期途中であっても更新した。新技術の導入された新しいバージョンが発表されたため、動作の不具合の修正を取り入れるためである。1 週間から 2 週間の間に更新・検証作業を終了し、すべての MacBook Air の環境を更新することができた。

(3) 性能保証のための積極的な調整

利用状況をストレージサーバやネットワークの監視機能によって監視し、動作の問題や性能上のポトルネックを発見するたびに、積極的に調整を行った。たとえばストレージサーバとの通信がポトルネックになった場合には、無線 LAN と TCP/IP の通信パラメータを調整し、性能の測定を繰り返した。

単純な設定調整で解決しきれない場合は、MacBook Air が UNIX ベースの OS で動作していることから、学生の習得している UNIX の知識を活用して個々の PC の性能を引き出すような構成変更を行った。たとえば SSD とネットワークをストレージサーバの三者間で処理が分散するようファイルの配置や構成を工夫するなどの処置により、性能の向上を図った。

6. 考 察

MILAIS の 3 年間の運用実績から、アクティブラーニング空間に情報系専門科目を実施可能とする ICT の導入について考察する。

6.1. 授業の実施可能性

実施された授業の表全体から、ICT を導入したことの制約にならずに多様な形態の授業が実施できたと言える。

実施された授業は特定の学科や特定の科目だけでは

Vol. 38, No. 3 (2014)
ない、また特記のスタイルの授業だけが突出しているというわけでもない。プロジェクトベースの科目も演習科目も語学もあり、コンピュータをまったく利用しない科目も合わせて実施されている。学年に従って、MILASは幅広く授業を実施できることが示唆される。

また、授業スタイルについてのアンケートから、授業担当教員の計画した学習活動を十全に実施できることが示唆された。具体的には、授業形態をMILASのために変えた教員がほとんどであり、教員の期待した通りに変わったことや、受講生の振るまいや役割が変化したことから、MILASが単に授業実施が可能な環境というだけでなく、多様な授業を効果的に実施できる可能性があることが分かった。

6.1.1. 情報系専門科目の実施
実施された授業の表から、コンピュータを利用する比重の高い専門的な授業が継続的に実施されたことが分かる。MILASは情報系専門科目を実施できるようアクティブラーニング空間にICTを導入したものと言えるが、このことが機能していることが示された。

6.1.2. コンピュータも利用する専門科目の実施
実施された授業の表から、コンピュータの利用の比重の高くない専門科目の授業も継続的に実施された。設計要件は情報系専門科目を想定したものであったが、それだけでない、補助的なコンピュータ利用も適切にサポートされている可能性が示唆された。

6.1.3. その他の授業の実施
コンピュータを利用せず、専門的でもない科目や学問が継続して利用された。MILASの採用した設計要件では、ICTを格納できることが挙げられている。この結果から、単に来年に通る演習室が実現されてしまったわけではなく、アクティブラーニング空間の機能を活用していなかったことが示された。

6.2. 設計要件の有用性
本稿では、従来の実験室や演習室で行われていた活動を分析し、アクティブラーニング空間にどのように適用するのか、その設計要件を整理した。事例よりこれらの設計要件が有用に働く場合があることを確認した。

6.2.1. 柔軟性を損わないICT
従来、デスクトップ型PCで構築されることの多かった環境を、一人一台のノート型PCに置き換えることで、アクティブラーニング空間の持つ柔軟性を損なわないよう、ICTを導入することを狙った。ノート型PCにしたもので、実質的にケーブルを配線することがなくなり、学習者の行動が制限されなくなることが期待できるためである。実際にプログラミングの授業事例で学習者の活発な活動が見られるところから、本設計要件が有用であることが示された。

6.2.2. 速度と反応性と構成管理のバランス
従来の実習室等で利用されていた技術とは異なるNetRestore技術を用いることで、妥当な管理コストで一様な環境を提供しつつ、これまで以上に高い性能のコンピュータ環境を提供できた。プログラミングが支障なく実施できること、またゼグローのような活動に埋め込むことができることから、本設計要件が有用であることが示された。

本実験ではNetRestore技術を用いが、VDI技術も本設計要件を実現するために利用できる可能性がある。すべてのICT環境を仮想化して非常に強力なサーバ上に集約し、ネットワーク越しにあたかもそれが手元にあるかのように利用する技術である。この技術の特徴は、ユーザの手元にあるPCをネットワーク上の強力な仮想化基盤上の仮想マシンで置き換えようとするところにある。

VDI技術の中核にも仮想化基盤は用いられており、ユーザから見るとよく似た技術であるかのように見えることがある。しかし仮想化基盤の画面をネットワーク経由でアクセスするだけでは、ユーザの手元のPCを置き換えることは困難である。一例を挙げると、学習者が授業中に利用しようとする種々のUSB機器について、手元にPCがあれば単に接続するだけで済むが、ネットワーク上の仮想マシンに接続することは技術的にも操作的にも困難である。仮想化基盤でも仮想マシンの画面を手元へ転送することはできましたが、手元の機器類を仮想マシンに接続することは難しかった。これに対してVDI技術は、こうしたエンドユーザの利便性を実現するさまざまな技術を仮想化基盤に追加し、利用しやすくまとめたものと位置付けられるものである。

MILASの建築当時は十分な性能と反応性を発揮できる状況になかなかために採用を見送ったが、メカトロニクスのような柔軟な利用例が実現できていることから、将来的にはより大規模に実施する等、採用を検討すべき技術であると考えられる。

6.2.3. 授業と密接に連携する保守性
MILASの構築に際して、授業と密接に連携するために、運営スタッフだけでなく保守・管理が可能な技術を用

日本教育工学会論文誌（Jpn. J. Educ. Technol.）
いった。MacBook Airや大規模化基盤を選定した理由の一つである。長期休暇や授業時間外などの時間を利用し、学生スタッフと連携することで、MILAISのICT設備や環境を維持・更新することができた。特に、授業期間中にもかかわらず、プログラミングの授業の中核である統合開発環境を切り替えることができたことや、性能を確保するために積極的にチューニングを実施できたことは、構築時から運用体制も一体のものとして技術を検討したことが負のところが大きいと考えられる。本設計要件は有用に働くことが示された。

6.3. デザイン原則の妥当性

MILAISの設計要件について、6.2でその有用性が示された。これはデザイン原則として掲げた2つの原則、すなわち、原則1「学びの責任が学び手にある」と原則2「活動の途中のプロセスを積極的に他者と共有する」に基づいて検討したものである。従って、MILAISでの授業実践の結果から、2つのデザイン原則の妥当性は示唆された。

7. まとめ

情報系専門科目におけるアクティブラーニングの意義について検討し、そのための学習環境の整備について、設計要件を整理した。

まとめられた設計要件を用いて機器選定や空間設計を行い、実際の学習空間MILAISを構築した。

希望する教員と協力して授業を実施し、情報系専門科目が継続的に実施可能であること、学習空間の保守や更新が運用スタッフによって持続可能であること、多様な授業実践が実施できたことから、本研究でまとめた設計要件の有用性とデザイン原則の妥当性を示した。

謝辞

授業の実施に御協力いただいた先生方に感謝いたします。

MILAISの運用・保守に関わっていただいた学生スタッフの皆様に感謝いたします。

限られた予算の中で通常では無理と思える要望を反映していただいた施設課のみかさとに感謝いたします。

業務支援職員としてデザイン補助と初期運用を担当していただいた木村寛之氏に感謝いたします。

参考文献


浜元信州, 三河賢治, 青山茂義 (2011) 教育用パソコンのネットワークプール起動時間に影響を与える要因の評価. 学術情報処理研究, 15: 46-52

林一雅 (2010) ICT支援型ラーニングスペースにおける授業の類型化 - 東京大学アクティブラーニングスタジオの事例から -. 日本教育工学会論文誌34(Suppl.): 113-116

美馬のゆり, 山内祐平 (2005) 未来の学びをデザインする. 東京大学出版会, 東京


Summary

This paper describes the construction of an active learning environment that allows the implementation of information system—a highly valuable method which includes programming—for special subjects. However, due to insufficient equipment in class, we usually practice in the laboratory or computer room, both equipped with PCs. Thus, completing certain exercises using high-performance computers with a partner or in a group is difficult. In this research, requirements for an active learning space for practicing information system for special subjects was arranged and divided into three main points: ICT that does not spoil the space’s flexibility of usage; a balance among speed, reactivity, and configuration management; usability that can coordinate closely with a lesson and conservativeness. We examined the technology for realizing this environment, then designed and built MILAIS, a classroom in which we can practice information system for special subjects and...
various other subjects for three years.

KEYWORDS: LEARNING ENVIRONMENT DESIGN, ACTIVE LEARNING, ADVANCED INFORMATION, PBL, COLLABORATIVE LEARNING

(Received February 5, 2014)