短報
根系の引張強度と曲げ強度から推定した樹木根系の斜面安定効果*

野々田稔郎**・林 拙郎***・川 清洋***

I. はじめに

崩壊の発生に対する根系抵抗の観点によって、根系の引き抜き強度から抵抗を求める（北村・鶴沢、1983）、林地斜面の安定解析に組み入れる研究が行われている（鶴村・渡辺、1977）。しかし、発生直後の崩壊地に残存する根系量を調査する等、斜面安定解析を行った研究は、Abe and IWAMOTO（1986b）、塚本（1987）らを除くと少なく、崩壊時の根系機能の実態と役割を明らかにする必要があるものと考えられる。

崩壊時に想定した根系の強度については、根を含んだ土を直接せん断する方法によって、遠藤・鶴田（1968）、Abe and IWAMOTO（1986a）、阿部（1991）が考察を行っている。これらの報告では、崩壊せん断面の根系抵抗 Cs を土のクーロン強度式における粘着力項に類する項に与えており、崩壊発生に対する土と根系抵抗能力を加えた強度 R は、次式（1）式で表される（遠藤・鶴田、1968；Abe and IWAMOTO, 1986b；塚本、1987；阿部、1991）。

\[R = c + C_s + \sigma \cdot \tan \phi \] (1)

ここで、c：粘着力、\(\sigma \)：垂直応力、\(\phi \)：内部摩擦角である。

著者の崩壊地における残根の調査では、そのほとんどが引張り破断の状態を示している。このことから、崩壊発生時の根系には引張力が作用することが考えられる。したがって、図-1 に示すような崩壊せん断面の根系抵抗性は、単根の引張破断力 T を測定し（Abe and IWAMOTO, 1986b）、その合計を崩壊面積 A で除して次式のように求める方法が行われている（Wuら、1979；Waldrong、1977；Luckmanら、1982）。

\[C_s = (\Omega T \sin \theta \cos \theta + \sigma \tan \phi) / A \] (2)

ここに、\(C_s \)：引張力より求められる単位面積当たりの根系抵抗性、\(\theta \)：せん断ひずみの角度である。しかし、本質化した大根の場合、曲げ破壊によって破壊されることはあり、その場合には曲げ応力を考慮した解析を行う必要がある。

根系の影響を考慮した斜面安定解析では、塚本（1987）を除いて、限根長斜面での計算である（鶴村・渡辺、1977；Abe and IWAMOTO, 1986b；Wuら、1979；Gray and Megahan, 1981）。限根長斜面の安定解析は、崩壊の破断面が垂直以外の場合については不十分であり、また崩壊地の根系の影響を考慮することができるが、崩壊下部と源頭部の根系の影響を考慮することができない。

本報告では、発生直後の崩壊地で行われた崩壊面における残根の引張試験の結果より、曲げ破壊を考慮した根系抵抗力を求めた。次に簡易ヤンブー法（Janbu, 1957）を用いて、崩壊面の根系抵抗力を考慮した林地斜面の安定解析を行い、樹木根系が抵抗力に及ぼす影響について考察を行った。

II. 崩壊地の残根根系分布

調査崩壊地は、花壇岩帯である栃木県一志郡美香村丹生後であり、1990 年の台風 19 号にともなう降雨（総降雨量 660.5 mm、9月 14 日より 20 日）によって発生した。崩壊が発生した林分は、平均樹高 8.8 m、立木密度 4,200 本/ha のスギ 15 年生である。崩壊規模は、崩壊面積 24.6 m²、崩壊長 6.65 m、崩壊幅 4.81 m、平均崩壊深 0.75 m と小規模で、典型的な表層崩壊である。

表-1 に、崩壊面に残存した根の直径階別本数比率を示す。表中背景部、側面部は全数調査の結果であるが、源頭部は、ブロック調査（4.77 m² 中の 1.20 m²）の結果である。表-1 に、残存根の大部分が 3.9 mm 以下の根系で占められ、10 mm 以上の根系はほとんどみられない。同様のことは、阿部ら（1985）も報告しており、このような分布形態は、崩壊後の残根根系に特徴的にみられるものと考えられる。

図-2 は、崩壊地の平面図である。黒丸は、底面部の
表-1. 調査崩壊地に残存した根の直徑別本数比率

<table>
<thead>
<tr>
<th>直 径 (mm)</th>
<th>0.0〜1.9</th>
<th>2.0〜3.9</th>
<th>4.0〜5.9</th>
<th>6.0〜7.9</th>
<th>8.0〜9.9</th>
<th>10.0〜19.9</th>
<th>20.0以上</th>
<th>総本数</th>
</tr>
</thead>
<tbody>
<tr>
<td>崩壊底面部</td>
<td>92.2%</td>
<td>5.8%</td>
<td>1.2%</td>
<td>0.2%</td>
<td>3.3%</td>
<td>0.2%</td>
<td>0.1%</td>
<td>1315</td>
</tr>
<tr>
<td>崩壊側面部</td>
<td>89.1%</td>
<td>7.0%</td>
<td>3.0%</td>
<td>0.5%</td>
<td>5.9%</td>
<td>-</td>
<td>-</td>
<td>201</td>
</tr>
<tr>
<td>崩壊頂面部</td>
<td>86.7%</td>
<td>11.5%</td>
<td>1.2%</td>
<td>-</td>
<td>-</td>
<td>0.6%</td>
<td>-</td>
<td>173</td>
</tr>
</tbody>
</table>

崩壊底面部、24.60 m²：崩壊側面部、5.64 m²：崩壊頂面部、4.77 m²：崩壊面。側面部は、全面積を調査した結果。原稿部は、1.20 m²をプロット調査した結果。

図-1. 引張応力による根の破壊

図-2. 崩壊地平面図

III. 崩壊地の残存根から推定される根系抵抗力

1. 根の引張試験結果と根系の引張抵抗力

崩壊地から長さ10 cmの根のサンプルを採取した。根のサンプルは、約24時間浸水することによって、土中の状態を再現した。このサンプルを用い、材料試験機によって引張試験を行った。図-3に引張試験による根の切断箇所の皮付き直徑と引張力の関係を示す。本調査地における根の皮付き直徑と引張力の関係は、次式で表される。

\[T = 2.754 \cdot d^2 \cdot 0.67 \leq d \leq 9.20 \text{mm}, \quad r = 0.89 \]

ここで、\(T \)：単根の引張力 (kgf)，\(d \)：根の皮付き直徑 (mm)，\(r \)：相関係数である。

さて、単位面積当たりの根系の引張抵抗力 \(C_t \) は、先の(2)式より単根の引張力の合計 \(\Sigma T \)を崩壊面積 \(A \)で除した \(S_t = \Sigma T / A \)を用いれば、次式のように表される。

\[C_t = S_t (\sin \theta + \cos \theta \cdot \tan \phi) \]

ここで、\(S_t \)は、下記の規則性土壌の面積せん断試験の結果より \(\phi = 27.79^\circ \)とし、\(W_{u} \)と同様に \(\theta = 40^\circ \)〜70\(^\circ\)まで0.1\(^\circ\)ずつ変化させると、根系抵抗 \(C_t \)は、1.05S_t \leq C_t \leq 1.13S_tの範囲となる。これららの平均値を求める\(C_t = 1.11S_t \)となり、ここではこの値を用いて \(C_t \)を求めることがある。

この場合の根系抵抗力は、根系が引張応力により破壊
図-3. 根の直径と引張力
根の直径は、皮付きでの測定値（0.67≦d≦9.20 mm）。
した場合の値である。しかし、崩壊面の観察結果では、
曲げ応力により破壊したと考えられる根が底面にみ
られた。樹木の根は、先端から根株にかけて徐々に太
くなり、木質化して弾性的な特徴を示す。図-4 はこの
ような場合であり、木質化した根には曲げ応力が働く
ことになる。

2. 根系曲げ抵抗力
根が曲げ破壊するときの最大曲げ応力 σ_m は、次式
で表される。

$$\sigma_m = \frac{M}{W_d} \quad (5)$$

ここに、M：最大曲げモーメント、W_d：断面係数、d：
根の直径である。根が破壊にいたる応力が、ここでは
曲げと引張で変わらないと仮定すると、σ_m は次式に
よって求められる。

$$\sigma_m = \frac{T}{d_m} \quad (6)$$

ここで、d_m：根の破断部の断面積である。（5）、（6）
式より、次の（7）式で示す曲げモーメントを超えるま
で、根は曲げ破壊を生じないことになる。

$$M = \frac{\pi \cdot d^3 \cdot \sigma_m}{32} \quad (7)$$

一方、崩壊が始動してからの土のせん断抵抗力は、
土塊の移動にともなって増加し、やがてピークに達して
崩壊する。したがって、土の抵抗力がピークに達する
までに土塊は移動することになり、根系にも平均的に
は図-4のような不動点と移動点のいずれを生ずるこ
とになる。このとき根に作用する力を F とし、せん断
層の厚さを D_t とすると、次式のような曲げモーメン
ト M が作用する。

$$M = D_t \cdot F \quad (8)$$

したがって（7）、（8）式より、次式が得られる。

$$F = \left(\frac{\pi \cdot d^3 \cdot \sigma_m}{32 \cdot D_t} \right) \quad (9)$$

また、単位面積当たりの根系曲げ抵抗力 C_s は次式で表
される。

$$C_s = \frac{\Sigma F}{A} \quad (10)$$

さて、曲げ破壊したと考えられる底面の根の直径
d としては、根の木質化の状況をみて、$d \geq 20.0 \text{ mm}$ の
根を対象として抵抗力の算定を行った。曲げ破壊した
根の長さは 50 mm であったことから、せん断層の厚さ
D_t を 50 mm とした。計算の対象となる根の直径 d
（26.8 mm）と（3）、（9）式より、$F = 162.5 \text{ kgf}$ が得
られた。同じ根を（2）、（3）式より引張応力のみで計
算すると、2,692.2 kgf であるから、根系抵抗力として
はこの場合かなりの過大評価となる。

3. 崩壊地全体の根系抵抗力
表-1 の残根の測定結果から計算した崩壊地全体
の根系抵抗力を表-2 に示す。源頭部の根系抵抗は、
崩壊発生時に引張応力のみが働くと考えられるので、
（3）式により求めた合計であり、側面部の根系抵抗力
は、残根を（3）、（4）式より求めた合計である。底
面部の根系抵抗力は、引張応力を受けてと考えられる
根（$d \leq 20 \text{ mm}$）を（3）、（4）式により、曲げ応力を受け
たと考えられる根（$d > 20 \text{ mm}$）を（3）、（9）式より
求めた合計値である。表-2 より崩壊底面部、側面
部、源頭部の根系抵抗力を合計すると、崩壊地全体で
13,32 tf の根系抵抗力が働いたことになる。

一方、崩壊地全体の根系抵抗力を曲げ応力による力
を考慮せずに計算してみる。源頭部の抵抗は（3）式
より、側面部の抵抗は（3）、（4）式により、それ
ぞれ計算しているので表-2 に示した値と同じである。
底面部は、$d \leq 20 \text{ mm}$ の根を（2）、（3）式から計算し、
先の（3）、（4）式で計算した $d > 20 \text{ mm}$ 根の値と合計
すると、8.33 tf の根系抵抗力が作用したことになる。
したがって、引張力のみで計算した場合には、崩壊地
全体で 15.85 tf の根系抵抗力が働いたことになる。
表-2. 調査崩壊地全体の根系抵抗力

<table>
<thead>
<tr>
<th>崩壊面全体の根系抵抗力 (t)</th>
<th>単位面積当たりの根系抵抗力 (t/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>崩壊近傍部</td>
<td>5.80</td>
</tr>
<tr>
<td>崩壊側面部</td>
<td>1.67</td>
</tr>
<tr>
<td>崩壊遠隔部</td>
<td>5.85</td>
</tr>
</tbody>
</table>

以下の斜面安定解析では、根系が曲げ破壊をともなって抵抗する場合は崩壊せん断面の根系抵抗力 C_x は引張応力を受けた根系の抵抗力 C_i ($d \leq 20$ mm)と、曲げ応力を受けた根系の抵抗力 C_b ($d > 20$ mm)を用いて次式で求める。

$$C_x = C_i + C_b$$ \hspace{1cm} (11)

$$C_i = 1.11S_i$$

また、根系が引張力のみによって抵抗する場合には、上式で $C_b = 0$ として求めることがある。

IV. 簡易ヤンプー法による斜面安定解析

1. 根系を考慮した斜面安定解析

極限平衡法による斜面安定解析は、崩壊をいくつかの帯片に分割する。調査崩壊を帯片に分割すると図-5のようになる。簡易ヤンプー法の斜面安定解析による安全率 F_s は、次の (12)式で与えられる（山口、1988）。

$$F_s = \frac{\Sigma [(c_i + C_{bi})(a_i + a_i \cdot \tan \phi_i) \cdot n_i]}{\Sigma [a_i + (\sin a_i \cdot \tan \phi_i) \cdot F_s]}$$ \hspace{1cm} (12)

ここで、c_i: 堆積力, a_i: 帯片底面の長さ, a: 帯片底面の傾斜, a_i: 帯片に働く土の重量, P: 帯片に働く樹木重量, u: 間隙水圧, ϕ_i: 内部摩擦角, i: 帯片の番号である。(12)式の分母は崩壊に対する抵抗力 R_s であり、分母上崩壊を発生させる駆動力 Z_s である。

ここで、崩壊せん断面（側面部、底部）の根系の影響を加えると、i 番目の帯片の崩壊に対する抵抗力 R_{si} は、(1), (12)式より、次の (13)式となる。

$$R_{si} = \Sigma [(c_i + C_{bi})(a_i + a_i \cdot \tan \phi_i) \cdot n_i]$$ \hspace{1cm} (13)

$$\sigma_i = (a_i \cdot W + P - a_i \cdot a_i \cdot \cos \phi_i)$$

源頭の根系、図-5に示したように崩壊を発生させる駆動力 Z_s に対して抵抗力として作用するので、(12)式の分母 Z_s は次式で表される。

$$Z_s = \Sigma [(a_i \cdot W + P) \tan \phi_i] - T_s$$ \hspace{1cm} (14)

ここに、T_s: 源頭根系抵抗力である。(12)～(14)式より、次の (15)式を得る。
図6. 伸長方向の変いによる崩壊発生時の桝木根系
模式図

図6-(b)に示すようなすべり方向と同方向に伸びる根系には、土塊が図6-(a)と同距離だけ移動しても根系の長さに余裕があり、引張応力は働かず抵抗力は発揮されないことになる。

図6-(b)に示したような根系が抵抗力を発揮するのは、図6-(a)に示すような引張側の根系が破断し、さらに土塊が移動して図6-(c)の根系に引張応力が働くような状態となった場合である。実際に調査地付近の林分で、土塊が50cm程度斜面下方に移動して根によって停止しているものがみられ、これは図6-(a)に示したような根系が破断して土塊が移動し、図6-(c)に示したような根系の抵抗力によって停止したものと考えられる。これらのことから斜面安定解析で考慮する根系抵抗力は、図6-(a)のような根系と図6-(b)のような根系を分けて考える必要がある。ここでは、引張応力により破断する根系の全抵抗力の1/2が崩壊時に作用する抵抗力であるとして次式に示すように根系抵抗力を求める。

\[C_{R\alpha}=C_{R\alpha}+h(C_{u\alpha}+2C_{u\alpha}D/L_{a\alpha}) \] \hspace{1cm} (17)

\[h=1/2 \]

土質定数は、現地土壌を採取して、湿潤状態で一面せん断試験を行った結果を用いた。測定時の含水比は40.41％であり、粘着力は\(c=2.32\, \text{tf/m}^2 \)，内部摩擦角は\(\phi=27.79^\circ \)である。湿潤土の単位体積重量\(\gamma_t \)は、測定時の値より\(\gamma_t=1.40\, \text{tf/m}^3 \)，飽和土の単位体積重量\(\gamma_s \)は、\(\gamma_s=1.63\, \text{tf/m}^3 \)である。単位面積当たりの桝木重量\(p \)は、スギ15年生の単木重量を0.07tfとすると、

\[p=0.03\, \text{tf/m}^2 \] \hspace{1cm} (野々田ら，1989).

これらの\(c, \phi, \gamma_t, p \)の値を用いた安全率の計算は、上記の各ケースに対してそれぞれ\(F_{a\alpha}=6.93, F_{a\alpha}=6.81, F_{a\alpha}=5.21 \)となり、斜面は安定している。しかし、これは無降雨の場合であり、崩壊の発生時には、降雨によって土の粘着力\(c \)が低下し、間隙水圧\(u \)の発生と上昇が生ずると考えられる。そこで、まず降雨時には間隙水圧\(u \)が作用せず粘着力\(c \)が低下するものと考え、\(c \)の低下にともなう安定性的変化を計算した。

Case 3 は、\(c \leq 0.202\, \text{tf/m}^2 \)で\(F_{a\alpha} \geq 1 \)となり、崩壊が生ずることになるが、Case 1, Case 2 は\(c=0 \)であり\(F_{a\alpha} \geq 1, F_{a\alpha} \geq 1 \)であり、崩壊が発生しないことになる。応力根の効果を現れている。\(c=0 \)としてもCase 1の根系抵抗力を用いた場合は、安定率は\(F_{a\alpha}=1.31 \)となり、Case 2 の場合は、安定率は\(F_{a\alpha}=1.19 \)となる。

次にCase 1, Case 2のの場合に対して、間隙水圧\(u \)が崩壊に関わらず一定に作用した場合には\(F_{a\alpha} \)となる間隙水圧\(u \)を求める。間隙水圧\(u \)が作用する場合には、粘着力\(c \)が\(c=0 \)となると仮定すると、この場合の間隙水圧\(u \)は、次のようにすることができる。

Case 1: \(u \geq 0.243\, \text{tf/m}^2 \), \(h \geq 0.491 \, \text{m} \)

Case 2: \(u \geq 0.152\, \text{tf/m}^2 \), \(h \geq 0.307 \, \text{m} \)

この水深\(h \)は、図7に示すように次式で求めた。

\[h=(u/w)/(\cos \Theta) \] \hspace{1cm} (18)

ここに、\(u \)：間隙水圧、\(w \)：水の単位体積重量、\(\Theta \)：斜面の傾斜角である。\(\Theta \)として、斜面の平均傾斜角（\(=45.3^\circ \)）を用いた。この\(u \)が崩壊に関わらず一定に作用するとした場合の\(h \)は、No.7等の土層厚に対しても多少過大となるが、安全率に与える影響は小さいものと考えられる。また、根系抵抗力に(17)式の\(C_{R\alpha} \)を用いない(17)式の\(C_{R\alpha} \)を用いると、そのときの\(u, h \)は以下に示すとおりとなる。

Case 1: \(u \geq 0.628\, \text{tf/m}^2 \), \(h \geq 1.269 \, \text{m} \)

Case 2: \(u \geq 0.443\, \text{tf/m}^2 \), \(h \geq 0.895 \, \text{m} \)

この水深\(h \)は、破壊地の平均地表深（\(=0.750 \, \text{m} \)）を越えており、抵抗力\(C_{R\alpha} \)が過大であることを示している。

ここで、抵抗力\(C_{R\alpha} \)を用いたときの崩壊発生時（\(F_{a\alpha} = 1 \)）の全抵抗力\(R_{c} \)を単位面積当たりで求めて、この値に対する単位面積当たりの根系抵抗力\(C_{R\alpha} \)の影響を検討してみる。

Case 1 の場合には、単位面積当たりの全抵抗力は0.737 tf/m²であり、底面側、側面側の単位面積当たりの根系抵抗力\(C_{R\alpha} \)は0.193 tf/m²であるから、全抵抗力\(R_{c} \)の単位面積当たりの値の約26％が\(C_{R\alpha} \)によるものとなる。

Case 2 の場合には単位面積当たりの全抵抗力は0.737 tf/m²となり、根系抵抗力\(C_{R\alpha} \)は0.153 tf/m²であるから、全抵抗力\(R_{c} \)の単位面積当たりの値の約21％が\(C_{R\alpha} \)によるものとなる。これらの\(C_{R\alpha} \)の値には、現頭部の根系抵抗力\(T_{c} \)が含まれないので、崩壊発生に
図-7 水位の発生した斜面

対する根系の影響は、さらに大きいものと考えられる。

V. 結論

崩壊発生直後の崩壊面の残存根を調査し、崩壊に与える根系の影響を考察した。残存根系の多くは引張り破断の形状を示しており、破断部の直径は、大部分が3.9 mm以下で10 mm以上の根系は少ない。

引き張り破断を受けたと考えられる根系抵抗力を求めるため引張試験を実施した。根の皮付き直径 と単根の引張力 との関には、約 (3) 式の関係が示された。また、曲げ応力を受ける破壊したと考えられる根には、曲げモーメントによる破壊力を考慮し、抵抗力を求めた。

根系の影響を考慮した斜面安定解析を簡易ヤンプ法により行った。この斜面安定解析では、底面面、側面面の単位面積当りの根系抵抗力 と根頭部の根系抵抗力 と内の (15) 式により考慮した。さらに、底面、側面面の引き張り破断を受ける根系は、斜面傾斜に対する伸長方向によって、抵抗力を発揮する側と発揮しない側があると仮定し、これを (17) 式により計測して根系抵抗力 と求め安定解析の計算を行った。

(13) 式を用いた安定解析結果では、間隙水圧 が作用しないものとして、粘着力 を低下させた場合には、根系抵抗力を引張力によって考慮したとき (Case 1) と根系抵抗力を曲げ力により考慮したとき (Case 2) に、c=0 としても、崩壊は発生しない (F_m=1, F_n=1) ことになった。しかし、無立木地のときは (Case 3), c ≤ 0.197 t/m² で崩壊が発生する (F_m=1) こととなり、応力系の効果が示された。間隙水圧 が作用する場合には c=0 と考えると、Case 1, 2 ともに崩壊が発生することになった (F_m=1, F_n=1)。この場合には、単位面積当りの崩壊発生抵抗力に対する は、Case 1 で 26%が、Case 2 で 21%が関与していることが示された。

今回の安定解析では、根系の伸長方向の違いによる根系抵抗力を (17) 式の (k (=1/2)) によって考慮した。しかし、この k の値に関しては、根系が徐々に切断されていく過程や、根系の伸長様式等に関連して考える必要があり、今後の検討課題である。

引用文献

阿部和治・岩元・吉野昭一・石垣直朗・星水秀樹 (1985) 崩壊泥における根木根系分布の実態. 96 回日林研: 639~642.

遠藤泰造・鶴田雄次 (1968) 根の根が土のせん断強さに与える作用. 林試北支年報: 167~181.

(1992年10月15日受理)