インド西ベンガル州のエビ養殖と稚エビ漁

森 日出樹

I はじめに

冷凍エビの世界1位の輸入国であり、消費国である日本は、その冷凍エビのほとんどをアジア諸国から輸入している。日本への冷凍エビ供給国のひとつであるインドは1985年から第1位の供給国であったが、ここ数年の乱獲による海エビ資源の枯渇、そして、東南アジア諸国、中国、台湾からの養殖エビ輸入の急増により、1986年以降1位の座を奪われている。

このような状況から、最近インドでは、インドをおびず1位の冷凍エビ供給国にすべく、養殖エビの増産に力を入れている。この養殖エビ増産計画において最も有望視されているのがインドのエビ養殖州である西ベンガル州である。西ベンガル州で養殖されるエビは、一般に

1) 世界で取引されるエビの、量にして32.3％、額にして41.6％が日本に輸入されていて（FAO Yearbook, Fishery Statistics-commodities, 65, 1987より算出）。日本のエビ輸入量は81.1％がアジア諸国から輸入されたエビである（日本関税協会『日本貿易月表』1989年12月版より算出）。

2) Banerji, S., Eighth Plan Perspectives for the Fishery Sector-Technology Policy Package for Increasing Prawn Production in India, Secretary to Government of West Bengal, Department of Fisheries, 1989, p. I.

3) 日本のエビ輸入国上位5国は、1位から順に、1985年度では、インド・インドネシア・台湾・中国・オーストラリアであったが、1987年度では、台湾・インド・インドネシア・中国・オーストラリアとなり、1989年度では、インドネシア・タイ・中国・インド・フィリピンの順になっている（日本関税協会『日本貿易月表』1989年12月版より算出）。

4) 例えば、インド政府商業省の管轄下にあるインド海産物輸出振興局（略称：MPEDA）が中心となって、養殖主に対する金銭面ならびに技術面での援助、大規模な人工海化場の建設などが行われている。①『水産週報』1190号、水産社、1989、15-16頁。また、州や政府の土地規制の緩和による養殖池の増加が見込まれて、1989年度の「新漁業政策」により、水産業者に対する合弁・輸入する財務的援助機関ができたりもしている。②『水産週報』1215号、水産社、1990、17-18頁。
「ブラック・タイガー」(学名: *penaeus monodon*) と呼ばれているエビで、インドで生産されるエビのなかでも大型で高価なものである。インドにとって第2位の冷凍エビ輸出相手国であるアメリカは、小型で安価な「ムキエビ」を大量にインドから輸入しているのに対して、第1位の輸出相手国である日本は、「ムキエビ」に加えて、大型で高価な「ブラック・タイガー」も大量に輸入している。そして、西ベンガル州で養殖される「ブラック・タイガー」のほとんどすべてが、州都のカルカッタから日本に向けて輸出されている。西ベンガル州は「日本向けの」「高価な」エビを大量に生産する一大産地となっているのである。

西ベンガル州で養殖エビがどのように生産されているのか、その養殖エビ生産に地元の住民がどのようにかかわり、その結果、地域社会がどのように変容していくのか。日本向けの養殖エビを大量に生産している地域でのこのような問題は、その地域だけの問題ではない。世界的な規模で経済的連関が進んでいる今日、ある地域の問題はより大きな力やシステムのなかで捉えられなければならない。特に、「第三世界」の地域の問題を扱う場合、先進諸国との関連性、あるいは、先進諸国による従属化といった観点からの考察が必要である。それは、地域の状況というものを、より大きな作用に抵抗した、あるいは、それを組み込んでいく過程（絶え間なく変化するもの）として捉えることもできる。

エビの問題はそのような地域研究の必要性を強く訴えているように思われる。

以上のような観点から今後の研究を進めていくうえでの基礎的作業（出発点）として、本稿では、1990年の春と夏に筆者が行なった現地調査をもとに、西ベンガル州のエビ養殖と稚エビ漁の現状を報告し、今後の研究課題を述べることにする。

II 西ベンガル州の汽水養殖

（1）インドの汽水養殖の特徴とその2つのタイプ インドでは、感潮河川の河口域の汽水を利用した汽水養殖でエビが養殖されている。インドの沿岸諸州にはあわせて150万ヘクタールをこえる汽水域があり、そのうち養殖に適した汽水養殖可能面積が約90万ヘクタールある。1987年の時点では、汽水養殖可能面積のうちエビ養殖を実施しているのは約4万3,000ヘクタールである。主なエビ養殖地域は、西ベンガル州、オリッサ州、アーンドラ・プラデシュ州、カルナータカ州、ケララ州（第1部）など東インドから南インド一帯に広がっている。なかでも、西ベンガル州は、汽水域面積40万5,000ヘクタール、汽水養殖可能面積21万ヘクタール、エビ養殖池面積3万3,000ヘクタールを擁し、汽水業者、汽水養殖可能面積、エビ養殖池面積ともにインドの各州のなかで最大である。また、養殖可能地の養殖池としての利用率も西ベンガル州が一番高く、インド全体でみた場合の

6) 「比較的小型の海エビは飼をかかれて輸出される。学名では *parapeneaeopsis stylifera* と呼ばれるエビなどがそれに相当する。」
7) 1988年の時点で、インドから日本へのエビ輸出高は圧力してアメリカの2.6倍、鰹にして5.5倍となっており、日本の方がより高価なエビを輸入していることがわかる（MPEDA, *Statistics Marine Products Exports* 1988, Cochin, 1990 より算出。)
第1図 インドの沿岸諸州と24パルガナス県

第1表 インドの沿岸諸州における水産面積、
養殖可能面積及びエビ養殖池面積
（単位：ヘクタール）

<table>
<thead>
<tr>
<th>州</th>
<th>水産面積</th>
<th>養殖可能面積</th>
<th>エビ養殖池面積</th>
<th>利用率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>インド</td>
<td>405,000</td>
<td>210,000</td>
<td>33,000</td>
<td>15.71</td>
</tr>
<tr>
<td>グジャラート</td>
<td>80,000</td>
<td>80,000</td>
<td>350</td>
<td>Neg</td>
</tr>
<tr>
<td>マハラシュトラ</td>
<td>150,000</td>
<td>120,000</td>
<td>120</td>
<td>Neg</td>
</tr>
<tr>
<td>タミルナード</td>
<td>80,000</td>
<td>72,000</td>
<td>50</td>
<td>Neg</td>
</tr>
<tr>
<td>ケララ</td>
<td>242,000</td>
<td>142,000</td>
<td>5,200</td>
<td>0.04</td>
</tr>
<tr>
<td>カルナータカ</td>
<td>95,000</td>
<td>85,000</td>
<td>4,500</td>
<td>0.05</td>
</tr>
<tr>
<td>マハラシュトラ</td>
<td>80,000</td>
<td>70,000</td>
<td>50</td>
<td>Neg</td>
</tr>
<tr>
<td>グジャラート</td>
<td>376,000</td>
<td>187,000</td>
<td>100</td>
<td>Neg</td>
</tr>
<tr>
<td>計</td>
<td>1,508,000</td>
<td>969,000</td>
<td>43,370</td>
<td>0.04</td>
</tr>
</tbody>
</table>

0.04％に対して、インド西部州では15.71％となっている（第1表）。

インドで養殖される主なエビの種類は、西ベンガル州、オリッサ州、アーチドゥラ・プラデシュ州といった東インドでは、先に述べた「プラック・タイガー」であり、カルナータカ州、ケララ州といった南インドでは、一般に「インド・ホワイト」と呼ばれているエビ（学名：penaeus indicus）である。どちらもクルマエビ科エビである。

インドの養殖は、そのほとんどが伝統的手段で行なわれている。つまり、低地のまわりに土手を築き、近くの河川から水を引いてきて、養殖池を作り、そこで種苗を放流するといったものである。給餌はほとんど行なわれない。いわゆる粗放型養殖である。また、このような養殖池では、エビのみが養殖されるわけではなく、他の魚も混養されるのが普通である。

さらに、このような伝統的な養殖では、養殖池として利用される土地が稲作にも利用される水田裏作養殖の形態をとっている。そして、こ
の水田裏作養殖は、稲作の行なわれ方の違いにより、大きく2つのタイプに分類されている。ひとつは、一定の期間、養殖と稲作を別々に分け行なうものであり、paddy-cum-fish culture と呼ばれている。もうひとつのタイプは、養殖と稲作を別々の時期に分け行なうものであり、paddy and fish culture と呼ばれている。paddy-cum-fish culture は西ベンガル州で行なわれている代表的な養殖形態であり、そのうちの90%近くが稚苗を放流するだけのものである。一方、paddy and fish culture はケララ州やカルナータカ州で行なわれている代表的な養殖形態である。

（2）西ヴェンガル州の paddy-cum-fish culture インド最大のエビ養殖州である西ベンガル州では、上述したように、伝統的な粗放型養殖が paddy-cum-fish culture というかたちで行なわれている。最近、稲作を行なわず、養殖のみを周年行なう養殖池が増えつつあるとはいえ、まだまだ paddy-cum-fish culture が主流である。

この西ベンガル州の養殖エビの約4分の3を生産しているといわれるのが西ベンガル州の南部に位置する24パルガナス県である。その中でもハロア郡とミナカ郡は大生産地として知られている（第1図）。ここでは、ハロア郡とミナカ郡での事例をもとに、paddy-cum-fish culture の行なわれる手順と技術を述べていくことにする。

まず、養殖主は養殖を行なうための土地を借りなければならない。ほとんどの養殖主は1年単位で毎年同じ土地を借りる。借りる土地の面積は1ヘクタールから大きなものでは百数十ヘクタールと、養殖主によってちまちまであるが、50ヘクタール以下のものが大部分である。

土地を借りた養殖主は、土手を作り、土地を囲いこみ、そこに、河川あるいは大きなキャナルから引いてきた水を流し込んで養殖池を作る。養殖池まで水を引いてくる水路には、水位や水流をコントロールする水門と、「パタ pātā」と呼ばれる竹篭がV字型あるいはW字型にセットされる（第2図）。養殖池によって多少のずれはあるものの、だいたいオクロハヨン agra-häyan 月（11月〜12月）の終わりからボウシュ pous 月（12月〜1月）の始めにかけて養殖池への水の注入が行なわれ、稚苗（稚エビや稚魚）の放流も開始する。最初の1カ月から2カ月半の間は、飼となる藻類がよく育つように、水位は15〜30センチメートルに保たれ、まず、稚エビと共入した（mullet）の放流が始まる。ついて、コイやティラピアの放流が始まる。水位は次第に上げていく。

第2図 西ベンガル州の養殖池の略図

12) 前掲9）pp.23-34。
13) カルカッタの Fishery Market and Statistics Section での聞き取りによる。
14) 前掲9）pp.23-24。
一般に、稚エビがもっとも多く放流される時期は養殖開始時点からファルグン phālguṇ 月（2 月～3 月）の間である。その後、アシャル āsār 月（6 月～7 月）あるいはシュラポン srāban 月（7 月～8 月）まで放流は続けられるが、放流される稚エビの数は月を追って減少していく。

ジョイシュート joistha 月（5 月～6 月）の終わりごろからモンスーンが始まり、それ以降、水質中の塩分濃度は低下していき、バドロ bhādra 月（8 月～9 月）には最低に達する。この塩分濃度の低下はエビや他の魚の成育を妨げるため、シュラポン月（7 月～8 月）の終わりごろからは稚エビをはじめ他の魚は放流は行なわれなくなる。

魚の放流にかかって、シュラポン月（7 月～8 月）の終わりごろからバドロ月（8 月～9 月）にかけて養殖池で稲の植え付けが行なわれる。その後、稲の収穫が行なわれるオグロハヨン月（11 月～12 月）まで、養殖池は水田にもなる。

稚エビは 4 ～5 カ月で出荷できる大きさにまで成長し、チョイトロ coitra 月（3 月～4 月）あるいはボイシャク boīsākh 月（4 月～5 月）からその収穫が始まると、エビの収穫は稲の収穫が行なわれるオグロハヨン月（11 月～12 月）までつづくが、多く収穫されるのはボイシャク月（3 月～4 月）からシュラポン月（7 月～8 月）までである。他の魚もエビと平行して収穫される。

収穫は主に養殖池の内にいる水路で行なわれる。河川の上流部に水路の水門を開き、養殖池に水を流し込むようにする。エビや魚は流れの来る方向に頭を向けた性質（走流性）があるので、養殖池のエビや魚は水流に逆らって水路に入ってくる。そして、この水路に入ってきたエビや魚は、前述した方法の先に取り付けられた「アトル ātal」と呼ばれる竹竿の箇に獲らえられることになる（第 2 図）。直接養殖池から網を使って収穫される場合もある。しかし、稲作が行なわれる時期には、水路での水の流れを利用した漁獲のみが行なわれる。

オグロハヨン月（11 月～12 月）には、養殖池の水は次第に乾燥させられ、魚はすべて収穫され、稲も収穫される。そして、1 年の借地期間は終了する。

以上、paddy-cum-fish culture の 1 年間の養殖の手順と技術を追ってみたが、これを四つの段階に分けることができる。すなわち、①魚（エビ）を放流するだけの段階、②魚（エビ）の放流と収穫を行う段階、③稲の栽培と魚（エビ）の収穫を行う段階、④稲と魚（エビ）の双方の収穫（獲）を行う段階、以上四つの段階である。さらに、これら四つの段階をより大きく分類すると、①と②は養殖のみが行なわれる段階、③と④は養殖兼稲作が行なわれる段階となる。これを図に示したのが第 3 図である。

ちなみに、養殖のみを営む養殖池でも、シュラポン月（7 月～8 月）からは塩分濃度の低下のため、稚エビの放流は行なわれない。そのため、養殖に関しては、paddy-cum-fish culture とほぼ同じようなサイクルで行なわれる。ただ、稚エビを放流するのに稲の転り入れを待たなくてすむため、カルティク kārtik 月（10 月～11 月）ごろから稚エビの放流を始めることができる。

III 西ベンガル州における輸出向けエビの生産高と流通

（1）paddy-cum-fish culture でのエビの生産高 paddy-cum-fish culture での 1 ヘクタール当たりの年間の生産高とその内訳を第 2 表に示した。放流のみの養殖池でも、給餌を行なう養殖池でも、1 ヘクタール当たりの生産高とその内訳に大差はなく、エビと他の魚が共に

15） 井上 実「魚の行動と漁法」，恒星社厚生閣，1978，25～27頁。
第3図 paddy-cum-fish culture の1年間の養殖サイクル

ほぼ50%ずつ合計で生産される。しかし、生産額でみた場合、エビはその80%以上を占め、エビその他の魚よりもかなり高価なものであることをよく示している。

第3表は西ベンガル州のpaddy-cum-fish cultureにおける数値を示すものである。輸出向けのエビが全生産量の約半分（50.89%）を占めており、その他は国内消費向けになっている。

全生産量の約半分を占めるエビはそのほとんどが輸出向けであり、輸出向けに生産されるのはエビだけである。一方、エビ以外の他の魚はすべて国内消費向けである。

24パルガナス県で最大の卸売市場であるハロアのマーケットの例では、そこで売買される家水養殖生産物のうち、重量にして55.5%，価にして88.6%がエビで占められており、そのエビの

第2表 Paddy-cum-fish cultureでの1ヘクタール当たりの年間の生産高とその内訳 (1980-81)（単位: 量 kg, 順 Ra）

<table>
<thead>
<tr>
<th>生産物</th>
<th>量（%）</th>
<th>額（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>エビ</td>
<td>243.05 (53.66)</td>
<td>7,128.83 (82.34)</td>
</tr>
<tr>
<td>その他の魚</td>
<td>209.90 (46.34)</td>
<td>1,528.51 (17.66)</td>
</tr>
<tr>
<td>計</td>
<td>452.95 (100)</td>
<td>8,657.34 (100)</td>
</tr>
</tbody>
</table>

注）給餌を一切行わない場合の数値である。
資料）Srivastava, U. K. et al. (1985), p. 56より作成。

第3表 西ベンガル州のpaddy-cum-fish cultureの商品別生産量（単位: トン）

<table>
<thead>
<tr>
<th>項目</th>
<th>輸出向けエビ</th>
<th>国内消費向け</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>放流のみの養殖池</td>
<td>2,688 (51.44)</td>
<td>2,537 (48.56)</td>
<td>5,225 (100)</td>
</tr>
<tr>
<td>餌食べないう養殖池</td>
<td>320 (6.55)</td>
<td>366 (35.35)</td>
<td>686 (100)</td>
</tr>
<tr>
<td>合計</td>
<td>3,008 (50.89)</td>
<td>2,903 (49.11)</td>
<td>5,911 (100)</td>
</tr>
</tbody>
</table>

注）（）内はパーセンテージ。
95.0%が輸出向けである（1980一81年現在）。

（2）西ベンガル州での輸出向けエビの流通過程

養殖主に雇われている池労働者によって養殖池から収獲されたエビは、まず近くのマーケットに売られ、そこで競売にかけられる。

競売は委託売買人（commission agent；ビクレオ：カリ bikrae kari）の手によって行われる。彼は売り上げの3～4%をコミッション料として養殖主からもらうことになる。このような競売はマーケットが開かれる朝と夕方の1日に2回行なわれる。

委託売買人によって競売にかけられたエビは地元小舖売人（ベパリ beepari）たちによって競り落とされ、彼らの手にわたる。さらに、この地元小舖売人たちは、競り落としたエビを輸出業者のエイジェントのところにもっていく。地元小舖売人がどの輸出業者のエイジェントにエビを手渡すかは決まっている。カルカッタの輸出業者はそのエイジェントをとおして前貸金を与えることによって、地元小舖売人たちを抱え込み、彼らにエビの買い付けをさせているのである。

輸出業者のエイジェントはそれぞれマーケットの近辺に加工工場をもっていて、彼らの手にわたったエビはそこで頭をカットされて氷詰めにされる。彼らは輸出業者からキログラム当たり50パイサーのコミッション料をもっている。頭のカットと氷詰めの作業には近くに住む主婦たちが労働力としてかりでされることになる。

無頭になったエビはカルカッタの輸出業者の工場、あるいは、加工のみを行なう輸出業者の下請け工場に買い取られ、そこで大きさ別に種分けされ、箱詰めされ、そして、冷凍される。このようにして出来上がった冷凍エビがカルカッタの港から日本に向けて輸出されるのである。

以上のような輸出向けエビの流通過程を図にすると第4図の様になる。

第4図 西ベンガル州での輸出向けエビの流通過程

養殖主、養殖主に土地を貸与する地主、委託売買人、地元小舗売人、輸出業者のエイジェント、そして、養殖主のもとで働く池労働者や輸出業者のエイジェントのもとでエビの頭取りに従事する主婦たちにいたるまで、さまざまな地元住民が、さまざまな形で、輸出向けエビの生産に関与している。そして、このような養殖エビ生産の末端にあるのが、周辺の村々で、養殖主に売るための稚エビを獲っている漁師たちである。

ハロア郡やミナカ郡などにある養殖池に稚エビを供給している村のひとつにヒンチャカリ村がある。次に、ヒンチャカリ村での稚エビ漁をみていくことにする。

IV ヒンチャカリ村の稚エビ漁

（1）村の概要 ヒンチャカリ村はインドの西ベンガル州24パルガナス県に属し、カルカッタからは南東区50キロに位置する村である。村の南東はガンジス川の一分流であるマトゥラー川に臨んでいる（第1図）。マトゥラー川は感潮河川であり、上流はジョーel joar）と下流（バ
タ bhāṣā）が生じる。村人の大部分は農業に従事しているが、マトゥラーブ川に臨む村の南東には、漁業に従事する「ジェレ jele」と呼ばれる漁民カーストが集住している。この漁民（ジェレ）たちが集住する地域は村人たちから南ヒンチャカリと呼ばれ、農業従事者によって占められている西ヒンチャカリ・中央ヒンチャカリからは区別されている。ヒンチャカリ村で稚エビ漁を行うのは、この漁民（ジェレ）たちの集住する南ヒンチャカリの住民たちである。

1990年3月に筆者が調査したところでは、南ヒンチャカリの世帯数は61世帯、人口は369人である。このうちの12世帯を除く49世帯が漁民カースト（ジェレ）であり、漁民カースト（ジェレ）のうち8世帯を除く41世帯が稚エビ漁を行なっている。すなわち、南ヒンチャカリのほとんどすべての漁師は稚エビ漁を行なっているのである。さらに、稚エビ漁は男たちだけの仕事ではなく、女性や子供も直接稚エビ漁に携わっており、また、漁民カースト（ジェレ）以外の者で稚エビ漁を行なっている者もいるため、南ヒンチャカリの大部分の住民が稚エビ漁を行なっているといえる。南ヒンチャカリの漁民カースト（ジェレ）と稚エビ漁を行なっている世帯の世帯配置は第5図に示すとおりである。

（2）南ヒンチャカリの稚エビ漁　稚エビ漁は、その使われる網の種類によって二つのタイプに分けることができる。一つは、村人たちから「パクショ網 bākso jāl」と呼ばれている網を使う漁で、もう一つは、村人たちから「ポロ網 bara jāl」と呼ばれている網を使う漁である。ここでは前者を「パクショ網漁」、後者を「ポロ網漁」と呼ぶことにする。それぞれ漁法、主たる操業者、主たる漁期や操業時間帯、漁獲量に大きな違いがある。

a）パクショ網漁　パクショ網は全長約8フィート、網の前端は縦約2フィート×横約5フィートの長方形の竹の枠で口が開かれている小

第5図　南ヒンチャカリ
注）南ヒンチャカリ61世帯中54世帯を図にした。図中以外7世帯のうち1世帯が漁民カーストであり、稚エビ漁を行なっている。また、漁民カーストでない残りの6世帯のうち4世帯が稚エビ漁を行なっている。
型のナイロン製の網である。竹枠の四角から縄をのばして、その縄を持って手で網を引く仕組みになっている。

第4表は南ヒンチャカリにおけるバックショ網、ポロ網、漁船の世帯別所有数を示したものである。この表が示すように、バックショ網は稚エビ漁を行なっている世帯には必ず一つ以上はあり、稚エビ漁には欠かせないもっとも手ごろな網となっている。

その漁法は、河辺の浅瀬で網をゆっくりと数10メートル歩いて引っぱり、最後部の捕魚部にたまった獲物を揚げるというものである。

バックショ網は、河辺の浅瀬で使用されること、その大きさが前表に述べるポロ網よりも小さいこと、漁法が簡単なことから、女性や子供でも容易に使用できる。現に、女性や子供の使用者が目立つ。

b）ポロ網漁 ポロ網は全長約15フィートで、バックショ網の約2倍の長さがある大きなナイロン製の網である。竹枠はないがそのほかはバックショ網とほぼ同じ形をしている。稚エビ漁を行なっている45世帯のうち32世帯がこのポロ網を所有していて、バックショ網のように稚エビ漁を行なっているすべての世帯が所有しているわけ

第4表 南ヒンチャカリにおけるバックショ網、ポロ網、漁船の世帯別所有数

<table>
<thead>
<tr>
<th>漁民カスト</th>
<th>バックショ網</th>
<th>ポロ網</th>
<th>漁船</th>
<th>世帯番号</th>
<th>バックショ網</th>
<th>ポロ網</th>
<th>漁船</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>32×</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>33×</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>34×</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>35△</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>36×</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>37</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>38</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>8×</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>39</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>40</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>41</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>42×</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>43</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>44</td>
<td>2</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>45</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>46</td>
<td>2</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>47</td>
<td>2</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>48</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>49</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>51</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>52</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>53</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>56△</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>57</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>58△</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>59△</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29×</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>60△</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>61</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

注）×……稚エビ漁を行なっていない世帯
△……未亡人の地元仲買人
○……漁民カストではないが稚エビ漁を行なっている世帯

—— 81 ——
では（第4表）。
また、ポロ網は漁船がないと使用できない。漁船といっても手ごねの簡単なものである。ポロ網を所有し、稚エビ漁を行なっている32世帯のうち、漁船を所有している世帯は10世帯で、ポロ網を所有するすべての世帯が漁船を所有しているとは限らない。しかし、漁船を所有する世帯は必ずポロ網を所有している（第4表）。
ポロ網は漁船で川の中央まで持っていかれ、第6図に示したように敷設される。網は必ず水流を受けるように敷設され、水流とともに遇上してきた稚エビを獲らえるようになっている。いわゆる、袋待網漁である。

第6図 ポロ網の敷設の仕方

漁船も網の横に（網が2つの場合は網と網の間に）固定される。漁師は20～30分おきに網の後部の捕魚部のみを漁船に上げ、結び目をほどき、たまった漁獲物をあげる。
ポロ網漁は、漁船と大きな網を使うことから、漁師の男でないとできない漁である。ポロ網漁には、漁師がひとりで行なう場合、兄弟で行なう場合、妻と一緒に行なう場合などがある。いずれにしろ、1人か2人といった少数で行なわれる。

ｃ）漁獲活動の時期・時間帯と漁獲量（パクショ網漁とポロ網漁との比較） 第5表は、それぞれの月におけるパクショ網漁とポロ網漁の1日の漁獲量と稚エビの価格との関係を、村人からの聞き取りをもとに作成したものである。
パクショ網漁は1年中をとおして行なわれる漁であるが、その漁獲量は時期により大きな違いがある。

パクショ網の漁獲結果を示す表

<table>
<thead>
<tr>
<th>月</th>
<th>価格（Rs）/1000匹</th>
<th>漁獲量（匹）/日</th>
</tr>
</thead>
<tbody>
<tr>
<td>ポイシャク</td>
<td>70～80</td>
<td>500～1000</td>
</tr>
<tr>
<td>ジョイシント</td>
<td>40～50</td>
<td>500～1000</td>
</tr>
<tr>
<td>アシャルト</td>
<td>40～50</td>
<td>500～1000</td>
</tr>
<tr>
<td>シュラボン</td>
<td>25～30</td>
<td>300～500</td>
</tr>
<tr>
<td>バドロ</td>
<td>45～50</td>
<td>300～500</td>
</tr>
<tr>
<td>アッシン</td>
<td>70～80</td>
<td>200～400</td>
</tr>
<tr>
<td>カルティク</td>
<td>90～100</td>
<td>150～300</td>
</tr>
<tr>
<td>オグロハヨン</td>
<td>135～150</td>
<td>200～250</td>
</tr>
<tr>
<td>ボウシュ</td>
<td>135～150</td>
<td>100～200</td>
</tr>
<tr>
<td>マグ</td>
<td>135～150</td>
<td>100～200</td>
</tr>
<tr>
<td>ファルダン</td>
<td>40～50</td>
<td>800～1000</td>
</tr>
<tr>
<td>チョイトロ</td>
<td>40～50</td>
<td>800～1000</td>
</tr>
</tbody>
</table>

注）ベンガル暦と現代暦との対照は次のとおりである。

ポイシャク月 — 4月～5月 カルティク月 — 10月～11月
ジョイシント月 — 5月～6月 オグロハヨン月 — 11月～12月
アシャルト月 — 6月～7月 ボウシュ月 — 12月～1月
シュラボン月 — 7月～8月 マグ月 — 1月～2月
バドロ月 — 8月～9月 ファルダン月 — 2月～3月
アッシン月 — 9月～10月 チョイトロ月 — 3月～4月

18）金田繁之『日本漁具・漁法図説』、成山堂、1977、259頁。
殖池の塩分濃度が低下するこの時期は、paddy-cum-fish culture を行なう養殖池では稚エビを放す、稲作が行なわれる。養殖のみを周年行なう養殖池でも、塩分濃度低下のため、稚エビはほとんど放流されない。つまり、稚エビを漁獲しても、需要がきわめて低いため、ほとんど売れない。売れたとしても価格はきわめて低い。また、南インディアの漁師たちに共通する限りで農業労働者として雇われるため、この時期のパクショ網漁はほとんど女性と子供の行なう副業となり、ポロ網漁もまったく行なわれない。
一方、ポロ網漁が盛んに行なわれる時期はカルティク月（10月～11月）からファルグエン月（2月～3月）である。この時期は、養殖池で稚エビを多く放す時期にあたり、需要が増し、稚エビの価格も引き上げられる。そのため、パクショ網漁よりも大きな漁獲量が期待できるポロ網漁が盛んでに行なわれることになるのである。
しかし、ポロ網漁はこの時期毎日行なわれるわけではない。出漁日は潮の干満の大きさを左右する月の運行と大きく関係している。第6表は、漁師の話をもとに、月齢と午前中のジョアール（上潮時）の始まるおおよそその時間、及び、出漁日との関係を示したものである。
潮の干満の差が最も大きくなる新月（オマポッシャ amābassā）と満月（ブルニマ purnimā）のそれぞれの日から8日間が最もよく稚エビが獲れ、ポロ網漁もこの8日間に主に行なわれる。すなわち、オマポッシャあるいはブルニマからジョプトミ saptami の8日間が主な出漁日である。つづくオシュトミ astamī の3日間は稚エビはほとんど獲れないため、出漁はしない。次のエカドン ekādasi からチョトゥルディ catur-dasi の4日間は、稚エビの獲れる量は少ないが、出漁するときもある。
ポロ網漁の行なわれる時間帯はジョアールの時間帯（上潮時）である。だいたい午前3時から午前9時半ぐらいまでの間で始まるジョアールを挟って1日1回出漁する。1回の出漁時間は約5〜7時間である。新月（オマポッシャ）の日にはおよそ午前5時頃、満月（ブルニマ）の日にはおよそ午前6時頃にジョアールが始まるため、だいたいその時間に出漁を開始する。以降、ジョプトミのあたりまで、1日に約30分ずつジョアールの始まる時間が繰り下がるため、出漁開始時間も1日ごとに約30分ずつ遅れていく。エカ

第6表 月齢と午前中のジョアールの始まる時間

<table>
<thead>
<tr>
<th>月齢</th>
<th>月名</th>
<th>午前中のジョアールが始まる時間（およそ）</th>
<th>ポロ網漁の出漁日</th>
</tr>
</thead>
<tbody>
<tr>
<td>新月/満月</td>
<td>オマポッシャ／ブルニマ</td>
<td>午前5時／午前6時</td>
<td>主な出漁日</td>
</tr>
<tr>
<td>第1日</td>
<td>ブロティボド</td>
<td>午前5時半／午前6時半</td>
<td></td>
</tr>
<tr>
<td>第2日</td>
<td>ディティヤ</td>
<td>午前6時／午前7時</td>
<td></td>
</tr>
<tr>
<td>第3日</td>
<td>トゥリティヤ</td>
<td>午前6時半／午前7時半</td>
<td></td>
</tr>
<tr>
<td>第4日</td>
<td>チョトゥルティ</td>
<td>午前7時／午前8時</td>
<td></td>
</tr>
<tr>
<td>第5日</td>
<td>ポンチョミ</td>
<td>午前7時半／午前8時半</td>
<td></td>
</tr>
<tr>
<td>第6日</td>
<td>ショスティ</td>
<td>午前8時／午前9時</td>
<td></td>
</tr>
<tr>
<td>第7日</td>
<td>ショプトミ</td>
<td>午前8時半／午前9時半</td>
<td></td>
</tr>
<tr>
<td>第8日</td>
<td>オシュトミ</td>
<td></td>
<td>出漁しない日</td>
</tr>
<tr>
<td>第9日</td>
<td>ノボミ</td>
<td></td>
<td>出漁しない日</td>
</tr>
<tr>
<td>第10日</td>
<td>ドショミ</td>
<td></td>
<td>出漁しない日</td>
</tr>
<tr>
<td>第11日</td>
<td>エカドン</td>
<td>午前3時／午前4時</td>
<td>たまに出漁する日</td>
</tr>
<tr>
<td>第12日</td>
<td>ダドン</td>
<td>午前3時半／午前4時半</td>
<td></td>
</tr>
<tr>
<td>第13日</td>
<td>トロヨドン</td>
<td>午前4時／午前5時</td>
<td></td>
</tr>
<tr>
<td>第14日</td>
<td>チョトゥルディ</td>
<td>午前4時半／午前5時半</td>
<td></td>
</tr>
</tbody>
</table>

— 83 —
ドンからブリニマ（あるいはオマポッシ）まで、同様に、1日ごとに約30分ずつ出漁開始時
間が遅らされていく（第6表）。

ポロ網漁の1日の漁獲量は第5表にあるとおりだが、不漁の場合にはこの数値をはるかに下
回る数値になる。1990年3月2日に筆者が参加
観察したある漁師のポロ網漁では、2つのポロ
網を使っての約7時間の出漁時間で、稚エビの
漁獲量は100匹にも達しなかった。この日は新
月（オマポッシ）から5日後のボンチョミ
pancamiにあたり、漁師たちからよく獲れる
日とされている主な出漁日に入っているのであ
る。このように、主な出漁日にあたり日でも、
よく獲れる場合とそうでない場合との漁獲量の
格差はかなり大きいと言える。このことはバク
ショ網漁についても言える。

d）地元仲買人　以上のようにして獲られた
稚エビは、村に住む「バグダグロエ
bägdägraec」と呼ばれる地元仲買人たちによっ
て買い集められ、彼らが養殖池にまで売りにい
く。養殖池で稚エビを多く放す時期には、毎日
夕方に稚エビを集めまり、翌日の早朝に村を
出て、養殖池まで売りにいくといった生活を繰
り返す。このようなバグダグロエが南チンチャ
カリには3匹いる（第5図）。彼らによって南ヒ
ンチャカリの稚エビがハロア郡やミナカ郡など
にある養殖池に持ち運ばれるのである。

（3）南チンチャカリの人々の生活と稚エビ漁

稚エビ漁を行っている南チンチャカリの漁
師たちは稚エビ漁以外の仕事も行なっている。
前述したように、稲作期には、田植えや、稲刈
の農業労働者として雇われる。また、漁のない
日などに村の雑用（力仕事）を行なったり、畑
を持っている者は畑仕事を行ない、収穫された
作物を売りに出かけたりする。しかし、彼ら
の最も大きな収入源は何といっても稚エビ漁で
ある。

養殖池での稚エビの需要が最大になるカルテ

エイ月（10月～11月）からフィルゲン月（2月～
3月）は稚エビ漁の最盛期にあたり、ポロ網漁
を行なう漁師の男たちは稚エビ漁の主役になる。
もちろん、稚エビの漁獲量とそれによる収入は
この時期最大になる。

一方、1年中を通じて行なわれるバクショ網
漁は女性や子供も主になって行なわれる。特に、
漁師の男たちはポロ網漁に出ているときや稲作
期に農業労働者として雇われているとき、また、
その他の労働を行なっているときなど、もっぱ
ら漁師の妻や子供たちはバクショ網漁の担い手
となり活躍する。しかし、バクショ網漁の漁獲
量はポロ網漁の漁獲量に比べて少ない。また、
バクショ網漁のみが行なわれる時期は、養殖池
での稚エビの需要が減り、価格も低下するため、
稚エビ漁による収入はそれほど多くならない
（第5表）。このようなことから、バクショ網漁
においては女性や子供が行なう副業の色彩が濃
いといえる。

漁師の話によると、南メンチャカリでこのような稚エビ漁が行なわれるようになったのはこ
こ10年のことである。もともと地元の人々は好
んでエビ（ブラック・タイガーロ）を食べてきたわ
けではなく、現在でもほとんど食べていない。
いや、食べていないというよりは高価で食べられ
ないといったほうが正しいであろう。1キロ
グラムあたり漁師たちの月収の3分の1から2
分の1もするエビ（ブラック・タイガー）はたい
へん高値であり、めったに食することはできな
い。ところが、ここ10年の間、養殖エビ生産が
活気を示すなかで、南メンチャカリの漁師たちは
自分たちが食することもできないブラック・タ
イガーの稚エビを「日本人のために」家族ぐる
みで獲ってきた。そして、今や稚エビ漁は彼ら
の生活をささえる最大の収入源となっている。

V おわりに

(1)まとめと考察　乱獲による海エビ資源の
枯渇と各国の養殖エビ生産の増大がエビ輸出量に大きな影響を与えるようになったインドでは、新たなエビ生産の場として汽水養殖が大きな注目を浴びている。インド最大のエビ養殖州である西ベンガル州では、paddy-cum-fish cultureと呼ばれる伝統的な粗放型養殖が行なわれている。それは、降雨量の比較的少ない（養殖池の汽水中の塩分濃度が比較的高くなる）時期に種苗の放流を中心とした養殖を行ない、モンスーン以降の降雨量の比較的多い（養殖池の汽水中の塩分濃度が比較的低くなる）時期に獲取を中心とした養殖と稲作を行なうものであり、自然のサイクルに順応したかたちでの土地利用による養殖であると言える。そこでは、輸出向けのエビと国内消費向けの魚類を含めてはほぼ50%ずつの割合で生産され、さらに、国内消費向けの米も生産され、輸出向けの生産物と国内需要のための生産物がともに生産されている。しかし、その養殖生産物を生産額でみた場合、エビの生産額は他の魚の生産額をはるかに上回っている。つまり、「高価な」エビは国外（日本）に輸出され、他の「安価な」魚は国内で消費されているのである。

養殖池で生産された輸出向けのエビは、委託売買人（ビクロ・カリ）、地域小仲买卖人（ベバリ）、輸出業者のエイジェントを通して輸出業者に送られる。そのうち委託売買人と輸出業者のエイジェントは、それぞれ、養殖主、そして、輸出業者からコミッション料をもらい、安定した収入が得られていると言える。それに対して、地域小仲買人にはコミッション料のような保証された収入がない。また、地域小仲買人が委託売買人から競り落とすエビは有頭であるが、輸出業者がエビを買い取る時点では無頭になっている。そのため、地域小仲買人は有頭のエビが無頭になった場合のキログラム単価（参加まり率）をよく見極めないと大きな損失をこうむることになる。地元小仲買人の仕事はリスクが大きいと言える。養殖主から輸出業者にわたるまでのエビの流通過程には、経済的に安定した立場にある者（委託売買人や輸出業者のエイジェント）とそうでない者（地元小仲買人）が見て取れる。

次に、養殖池に売るための稚エビを漁獲しているヒンチャカリ村では、稚エビ漁が、養殖池での稚エビの需要のサイクルの影響を受けてながら、ボラ網とバクショ網を使い分けて行なわれていた。このことは、稚エビ漁に男性の行なう本業的役割（ボラ網漁）と主に女性や子供の行なう副業物役割（バクショ網漁）の2つの役割をもたせていると言える。この2つの役割があることによって、稚エビ漁は家族ぐるみで、かつ、1年中を通して行なわれる仕事となっているのである。しかし、その収入は常に安定なものである。稚エビ漁は農漁時と不漁時との漁獲量の差が大きく、漁につきものの賭としての性格が強い。さらに、稚エビの価格も養殖池での需要のサイクルにより大きく変動する。このような漁獲量や価格の不安定性を少しでも補うために、稚エビ漁が女性や子供も巻き込んだ家族ぐるみで行なわれる仕事になっているとも言える。

(2)今後のエビ養殖の展望と研究課題 養殖エビの増産に力を入れているインドは半集約型養殖によるエビ生産をめざしている。paddy-cum-fish cultureのような粗放型養殖では最小限の人工的技術しか使用されず、給餌もほとんど行なわれないため、1ヘクタール当たりの生産高は決して高いとは言えない。また、集約型養殖は、かなりの収穫が期待できるが、コストと手間がかかり、危険性も多い。それに対し、半集約型養殖はそれほどコストがかからないが、

19）集約型養殖では密殖を行なうため、連作障害、池の自家汚染などが発生しやすい。『水産週報』1216号、水産社、1990、16頁。
質の良いエビを安定して供給し続けることが可能であると考えられているからである。台湾の例が示すような集約型養殖の横浜。また、国土の狭い東南アジア諸国での養殖池を増やすことは限界を考慮すると、半開拓の広大な大水城を飼育し、半集約型養殖をすすめるインドは、エビ養殖大国として、益々期待されていくものと思われる。西ペンガル州でも半集約型の生産をめざして、新たな養殖池の開拓、paddy-cum-fish culture から養殖のみを営業するようになるほど社会の切り換え、さらには、科学技術を導入した養殖池の建設などが進行中である。

しかし、このような「輸出向けの」「高価な」エビの増産には従来はできないものがある。エビ輸出の進展はエビ生産に携わる地元住民を大きな市場システムに強く組み入れていくことであり、日本の市場に彼らを従属させることでもあるからである。そして、これは地元住民たちの経済的・社会的関係の再編成を促すこととも意味する。養殖主や輸出入業者のアイデンティティとして窓をうたつ者が、稚エビ漁を行う漁師や小仲買人たちを従属させることで、地域の経済的・社会的関係に新たな一側面を生じさせることがあるからである。このような従属化とそれにともなう地域社会の変容の具体的な過程を明らかにし、その意味を問うてみる必要がある。

本稿では、養殖エビ生産の過程を追っていくことによって、養殖エビ産業にかかわる人々の役割や立場、さらには、稚エビ漁をなす漁師たちのおかれている状況を多少なりとも明らかにすることができた。しかし、上述したような問題を扱っていくためには多くの課題が残されている。

養殖エビ産業の進展に対して、漁師をはじめとするそれぞれの地元住民（それぞれのカースト）がどのように適応し、あるいは、抵抗してきたのか。その結果、伝統的な漁村や地域社会がどのように再編され、経済的・社会的・文化的にどのように変容してきたのか。また、このような地域社会の変化がどのような社会問題を新たにもたらしてきたのか、あるいは、今後もたらすことになるのか。日本のエビ輸入とその消費のあり方とともに、以上のようなことを今後は詳しく調査研究し、考察していく必要がある。

【付記】本稿は1991年1月に関西学院大学大学院文学研究科に提出した修士論文の一部を加筆・修正したものである。

修士論文作成にあたっては、関西学院大学地理学研究室の浮田良典先生、八木康幸先生、田和正孝先生から懇切な御指導を賜った。東京大学の永ノ尾信悟先生には現地調査を行うにあたってお世話になった。京都大学人文科学研究所の田中雅一先生、龍谷大学の中村正司先生、国立民族学博物館の秋道哲郎先生からも貴重な御助言をいただいた。また、MPEDA 東京都支局の中山さんにもいろいろと御迷惑をおかけした。以上の方々、ならびに、ヒンチャカリ村の人々をはじめ、現地でお世話になった数多くの方々に厚く御礼申し上げます。

なお、本稿の概要は1991年7月の兵庫地理学協会研究発表大会において発表した。

（関西学院大学・院）

20）特にインドの場合は、他国と比べて生産コストが安く、大水城には工業排水による汚染もなく、飼料は天然のものを利用していることなどが大きなメリットであると考えられている。そして、このような条件下で行なわれる半集約型養殖にやって、1ヘクタール当たり800キログラムあらか1トンの生産を目標にしている。前掲4）217頁。
21）台湾では1988年に病害が発生し、養殖エビ生産に大きな打撃を与えた。【水産週報】1205号、水産社、1990、27頁。
22）西ペンガル州では、既存の養殖池33,000ヘクタールをすべて半集約型に切り替え、さらに、新たに半集約型の養殖池を33,000ヘクタール増やそうとする計画も提案されている。前掲2）26頁。