19. *Natural Equations of Curves under Circular Point-Transformation Groups and their Duals, II.*

By Tsurusaburo Takasu.

(Received November 1, 1924.)

In Part I, the natural equations of curves under the groups spoken of in the title have been treated in terms of the tetracyclic circle-(pentaspherical sphere-) coordinates (or of their natural duals). In the present part (II), they will be treated in terms of the tetracyclic (pentaspherical) point-coordinates (or of their natural duals). The results are new for the three-dimensional case. The present theory seems to be more suitable for the study of surface curves than the former.

I. Non-Euclidean Plane Curves.

1. If \((\xi)\) be the tetracyclic point-coordinates of a doubly oriented point of a plane curve, then the expression

\[
\varepsilon_{\alpha} d\rho^2 = \frac{|\xi d\xi\frac{d^2\xi}{d\xi^2}|}{(d\xi\frac{d^2\xi}{d\xi^2})^2},
\]

is an absolute invariant under direct quaternary orthogonal transformations as well as under the following transformations: \(\xi = h\xi\). It changes sign by an indirect quaternary orthogonal transformation.

\[
d\rho^2 = \frac{dR}{R^2},
\]

where \(R^{-1} = k^{-1} \cot \frac{v}{k}\) is the curvature. We call such \(\rho\) the *inversion-length.* It agrees with \(dp = (d\eta d\eta)\) in Part I.

2. We normalize \((\xi)\) as follows:

\[
\tilde{\xi} = \frac{\xi}{\varepsilon_{\alpha} (d\xi d\xi)^{\frac{1}{2}}},
\]

where \(t=1\) or \(0\) according as \((\xi)\) has or has not undergone an indirect quaternary orthogonal transformation. In the subsequent lines the factor \(\tilde{v}\) will be dropped. But it should be understood.
3. Then

\[dp^2 = (d\xi d\bar{\xi})^4, \]

\[dp = (-\varepsilon_0)^{\frac{4}{3}} \cdot \xi d\xi d\bar{\xi} d\bar{\xi} |^{\frac{1}{6}}. \]

We call such curves as \(dp = 0 \) *inversion minimal curves*. They are doubly oriented circles \((a \xi) = 0\).

4. The expression

\[(4) \]

\[\phi = -\left(\frac{d^2 \xi}{dp^2} \right)^4 = -\frac{5}{4} R^2 \left(\frac{d^2 R}{ds^2} \right)^2 - \frac{R^2 d^2 R}{ds^2} - \frac{1}{ds} + \frac{dR}{ds} + \frac{R^2 d^2 R}{ds^3} - \frac{R^2}{\kappa d^2 R ds} \]

is an absolute invariant under direct quaternary orthogonal transformations as well as under the transformations \(\xi = b \xi \) and changes its sign by an indirect quaternary orthogonal transformation.

5. **Theorem.** In order that two plane curves may be transformable into each other by direct circular point-transformations in the plane, it is necessary and sufficient that we can establish the correspondence in such a way that at the corresponding doubly oriented points, where the relations \(dp_1^2 = dp^2 \) holds, the relation \(\phi_1 = \phi \) holds also. In order that two plane curves may be transformable into each other by *indirect* circular point-transformations, it is necessary and sufficient that we can establish the correspondence in such a way that at the corresponding doubly oriented points, where the relation \(dp_1^2 = -dp^2 \) holds, the relation \(\phi_1 = -\phi \) also holds \((1)\).

6. The theory of the present § may be dualized.

II. **Euclidean Plane Curves.**

7. As long as the *Euclidean circular point-transformations* are concerned, it is perfectly analogous to the theory in § 1 except the forms of the expressions \((2)\) and \((4)\). They should be replaced by

\[(2') \]

\[dp^2 = \frac{dr ds}{r^2} \]

and

\[(1) \text{ This theorem is new only in the form of the expression } \phi. \text{ See Part I.} \]
respectively.

8. When the Laguerre group in plane is concerned, the theory remains again almost parallel to that in § 1. Peculiarities take place only in the corresponding expressions:

\((\xi)\): Laguerre’s doubly oriented line coordinates,

\[(1'') \quad \varepsilon_{\phi} dp^2 = \frac{\xi d\xi d^2\xi d^3\xi}{(\xi^2 d^3\xi)^{\frac{3}{2}}} ,\]

\[(2'') \quad dp^3 = \frac{dP d\theta}{P^2} ,\]

\[(3'') \quad i\tilde{\xi} = \frac{\varepsilon \xi d\xi d^2\xi d^3\xi}{\sqrt{\varepsilon_{\phi} (d^2 \xi d^3 \xi)^{\frac{3}{2}}}} , \quad \varepsilon = \pm 1 ,\]

\[(4'') \quad \phi = -\frac{\xi d^3\xi d^2\xi d\xi}{(\xi^2 d^3\xi)^{\frac{3}{2}}} = -\frac{r d^2 r}{d\xi^2} + \frac{3}{2} \left(\frac{d^2 r}{d\xi^2}\right)^2 + 5 \left(\frac{d^3 r}{d\xi d^2\xi}\right)^2 + \frac{1}{r} \left(\frac{d^2 r}{d\xi^2}\right)^3 + \frac{1}{r^2} \frac{d^2 r}{d\xi^2} .\]

III. Non-Euclidean Space-Curves.

9. If \((\xi)\) be the pentaspherical point-coordinates of a doubly oriented point of a space curve, then the expression

\[(5) \quad \varepsilon_{\phi} dp^2 = \frac{\xi d\xi d^2\xi d^3\xi d^4\xi}{(d^2 \xi d^3 \xi d^4 \xi)^{\frac{3}{2}}} ,\]

is an absolute invariant under direct quinary orthogonal transformations as well as under the transformations \(\xi = h\xi\). It changes sign by an indirect quinary orthogonal transformation.

\[(6) \quad dp^3 = -\frac{ds^5 S ds}{R^5 T^3 dR ds} , \quad S^2 = R^5 + T^3 \left(\frac{dR}{ds}\right)^2 ,\]

where \(T^{-1}\) is the torsion. We call such \(p\) the inversion-length of the first kind. It is historically new.
10. The expression

\[\frac{dt^i}{(d\xi^i d\xi^j)^{\alpha}} = \frac{S^2}{R^2 T^2} \]

is an absolute invariant under all quinary orthogonal transformations as well as under \(\xi = h\xi \). Such \(t \) is the inversion-length in Liebman's sense. But let us refer to it as the inversion-length of the second kind.

11. We normalize \((\xi) \) as follows:

\[(-1)^{\xi} = \frac{|\xi d\xi d\xi^i d\xi^j|^{\frac{1}{2}}}{(d\xi^i d\xi^j)^{\alpha}} \xi^i, \]

where \(t = 1 \) or 0 according as \((\xi) \) has or has not undergone an indirect quinary orthogonal transformation.

In the subsequent lines, we will drop the factors \((-1)^{\xi}\). But it should always be understood.

12. Then

\[dp^2 = (d\xi^i d\xi^j), \quad dp = (-\xi^i, j)^{\frac{1}{2}} |\xi d\xi d\xi^i d\xi^j|^{\frac{1}{2}}. \]

We call such curves as \(dp = 0 \) inversion minimal curves of the first kind. They are spherical curves: \((a\xi^i)^{\alpha} = 0\).

13. We call such curves as \(dt = 0 \) inversion minimal curves of the second kind. Their osculating spheres are everywhere null.

14. The expressions

\[\phi = -\left(\frac{d^2\xi^i}{d\xi^j d\xi^j}\right) = \frac{2}{h^2} \frac{d^2h}{ds^2} - \frac{3}{h^3} \left(\frac{dh}{ds}\right)^2 - \frac{1}{h^4} \left(\frac{1}{R^2} + \frac{1}{k^2}\right), \]

\[f = \left(\frac{d^2\xi^i}{d\xi^j d\xi^j}\right) = \phi^2 + \frac{1}{h^4} R^2 \left(\frac{dR}{ds}\right)^2 + \frac{1}{h^6 R^2 T^2} (\equiv \phi^2 + \psi, \text{say}), \]

where \(h \equiv -\left(\frac{R + \frac{dR}{ds}}{R^2 T^2}\right)^{\frac{1}{2}}, \quad \phi = -\frac{dp}{d\Theta}(^z), \)

\(\Theta \) the inversion twisting\(^(\text{a}) \),

are absolute invariants under all quinary orthogonal transformations as well as under \(\xi = h\xi \).

15. **Theorem.** In order that two space curves may be transformable into each other by a direct spherical point-transformation, it is necessary

\(^{(\text{a})} - \phi \) may be named the inversion-dualtorsion.

\(^{(\text{b})} \) See Part I.
and sufficient that we can establish the correspondence in such a way that at the corresponding doubly oriented points, where the relation \(dp_1 = dp \) holds, the following relations also hold: \(\phi_1 = \phi, \varphi_1 = \varphi \). In order that two space curves may be transformable into each other by an indirect spherical point-transformation, it is necessary and sufficient that we can establish the correspondence in such a way that at the corresponding doubly oriented points, where the relation \(dp_1 = -dp \) holds, the following relations hold also:

\[\phi_1 = \phi, \quad \varphi_1 = \varphi. \]

16. The theory of the present § may be dualized.

IV. Euclidean Space-Curves.

17. As long as the Euclidean spherical point-transformations are concerned, it is perfectly analogous to the theory in § 3 except the forms of the expressions (6), (9) and (10). They should be replaced by

\[
(6') \quad dp^2 = - \frac{ds^3 S dS}{r^3 T^3 dS/ds}, \quad S^2 = r^2 + T^2 \left(\frac{dr}{ds} \right)^2,
\]

\[
(9') \quad \varphi = -\left(\frac{d^2 \tilde{\xi}}{dp^2} \frac{d^2 \tilde{\xi}}{dp^2} \right) \approx \frac{2}{k^3} \frac{dh}{ds} - \frac{2}{k^2} \left(\frac{dh}{ds} \right)^2 - \frac{1}{k^2 r^2},
\]

and

\[
(10') \quad f = \left(\frac{d^2 \tilde{\xi}}{dp^2} \frac{d^2 \tilde{\xi}}{dp^2} \right) \approx \varphi^2 + \frac{1}{k^4 r^4} \left(\frac{dr}{ds} \right)^2 + \frac{1}{k^4 r^4 T^2}
\]

respectively, where

\[h \equiv -\left(\frac{r^3 + \frac{d^2 \tilde{r}}{dp^2}}{r^3 T^3} \right)^{\frac{1}{2}}, \quad \varphi \equiv -\frac{dp}{d\Theta}^{(*)}, \]

\[\Theta \text{ the inversion twisting.} \]

18. When the Laguerre group in space is concerned, the theory remains again almost paralleled to that in § 3. Peculiarities take place only in the corresponding expressions:

\[(\xi) : \text{Laguerre's doubly oriented plane coordinates}, \]

\[(*) - \varphi \text{ may be named the inversion-dual torsion.} \]
\[e_\phi \, dp^5 = \frac{|\frac{d\xi}{d\phi} \frac{d^2\xi}{d\phi^2} \frac{d^3\xi}{d\phi^3} \frac{d^4\xi}{d\phi^4}|}{(\frac{d\xi}{d\phi})^2} \],

\[(-1)^{\frac{1}{2}} \xi = \frac{|\frac{d\xi}{d\phi} \frac{d^2\xi}{d\phi^2} \frac{d^3\xi}{d\phi^3} \frac{d^4\xi}{d\phi^4}|^{\frac{1}{2}}}{\sqrt{e_\phi (\frac{d\xi}{d\phi})}} \xi, \]

\[q = -\left(\frac{\frac{d^3 \xi}{d \phi^3}}{\frac{d \xi}{d \phi} \frac{d^2 \xi}{d \phi^2}} \right)_i = \frac{2}{h^3} \frac{d^2 h}{d \theta^2} - \frac{2}{h^3} \left(\frac{dh}{d \theta} \right)^2 - \frac{1}{h^3} \left(\frac{1}{P^2} + 1 \right), \]

\[f = -\left(\frac{\frac{d^3 \xi}{d \phi^3}}{\frac{d \xi}{d \phi} \frac{d^2 \xi}{d \phi^2}} \right)_i = \phi^2 + \frac{1}{h^4 P^4} \left(\frac{dP}{d \theta} \right)^2 + \frac{1}{h^4 P^4}, \]

where

\[h = -\left(\frac{d^2 P}{d \xi^2} \right)^{\frac{1}{3}}, \quad \varphi = -\frac{dP}{d \Sigma}, \quad \Sigma = \text{Laguerre length}. \]

\((*) - \varphi \text{ may be named the Laguerre torsion}\)