Primary Mechanism on the Determination of the Dynamic Contact Angle on an Accelerating Contact Line

Abstract Estimation of the contact angle on a moving contact line is one of the important factors for the prediction of the liquid surface geometry contacting with solid. In this study the dynamic contact angle on an accelerating vertical glass rod is investigated both experimentally and numerically to elucidate the effect of the acceleration of the contact line. The experiment was held by using ethylene-glycol and its aqueous solution as test fluid. The measured contact angle in the transient state clearly deviated from that for the steady state, depending on the acceleration of the rod. Numerical simulation shows that the acceleration and the gravity terms in the momentum equation, which are relatively remarkable in macroscopic scale, are not responsible for such deviation in the contact angle. Rather, the dependence of the microscopic contact angle on the acceleration, estimated with the viscous bending model, should be the primary factor on the deviation of the contact angle.

Keywords: Dynamic wetting, Contact line, Contact angle, Surface tension, Viscous bending

1. 緒 言

2 流体の界面と固体面の交線である接触線の運動やそのでの界面と固体面のなす角度（接触角）は界面形状の境界条件となるため、それらの予測は固体面に接する流体の界面運動の予測に極めて重要である。接触線は工業的にもさまざまな状況で見られるが、表面張力が単位体積の流体へ与える力の大きさが代表長さの1乗に比例する(慣性力は3乗)ことから特に小さな体系、たとえば半導体洗浄やマイクロチャンネル内流相流といった場面においてより重要となる。

接触線が固体面上を運動するときの接触角（動的接触角と呼ぶ）は多くの場合静止時の値（静止接触角）とは異なる値を示す。動的接触角の静止接触角からのずれは多くの実験的[1,2]、理論的[3-5]研究によって調べられており、一般にキャピラリ数Ca (= μVCR/σ、σ：表面張力、VCR：接触線の固体面に対する相対速度（以後場合が不明である場合を正とする）、面積、粘性）で整理される[6,7]。

* 2015.11.18 受付
** 名古屋大学大学院工学研究科 〒464-8603 名古屋市千種区不老町
TEL: (052)789-5427 FAX: (052)789-4692 E-mail: takaito@nucl.nagoya-u.ac.jp
*** 大阪市立大学大学院
† 関西大学
性応力の界面での垂直方向成分と界面が発熱することによるラプラス圧（\(\sigma/K\)、\(K\)は界面の曲率）とが釣り合うことにより、CoxがStokes近似の仮定のもと、流れ場の境界条件の主要な因子が接触角からの距離に応じて変化することにより着目し、スケールを「微視的スケール」、「巨視的スケール」、それらの間「中間領域」の3つの領域に分け、それぞれについて上記の粘性流をCa数に基づいた接続することにより動的接触角に関する精緻なモデルを導出した。ここで「微視的スケール」とは接触角からの因子スケール近傍が想定され、接触角での応力の発散を回避するために導入される「壁面すべり境界条件」の影響が出得る領域である。一方、「巨視的スケール」は駆動時のにおける界面挙動やバルク運動による界面変形が有意となる領域が想定される。

一方、VoinovはCoxよりも前に、気液境界を対象として（すなわち気相側の応力を無視して）、上記の領域分割を考慮することなく気液界面での粘性応力から求まる界面曲率を界面に沿って積分し、\(\theta < 135^\circ\)の条件のもとでは近似式を用いることにより次式

\[
\theta(x) = \frac{3}{2} \theta_m^2 + 9 \text{Ca} \ln(x/l_m)
\]

を得た。ここで\(\theta(x)\)は固体面から界面までの距離\(x\)の位置における界面および壁面の法線ベクトルの成す角度であり、これ以降単に「接触角」と呼ぶ。また、\(\theta_m\)は微視的接触角と呼ばれる角度で、固体面からきわめて近い距離\(l_m\)の点での接触角である。\(l_m\)はすべりなし条件が適用できる最小距離と考えられる。この式は、Coxのモデルにおいて、Ca \(\rightarrow 0\)としたときの「中間領域」での表式と同様であり、巨視的領域での境界条件に起因する界面曲率が無視できる大きさの場合には、上式にて\(x\)に微視的領域の代表スケール（たとえば重力下ではラプラス長さ\(\sqrt{\sigma/\rho g}\)など）を代入することにより「巨視的接触角」が求められる。

このように、動的接触角については、その速度依存性への主要なメカニズムが理論、実験両面から明らかにされつつある。しかしながら、これらの議論はすべて定常を仮定したものである。高速の液滴が壁面に衝突した場合や、固体が界面に接

これらの背景より、本研究では、複数の加速度および流体粘性の実験を行うことにより、過渡接触角の定常時からのずれのパラメータ依存性を明確にすることとともに、その発生要因のスケールを数値解析も併用して明らかにすることを目的として行った。

2. 実験および数値解析手法
2.1 実験手法
実験はFig. 1に示すように、試料液体の界面と交差するように鉛直に設置された、下端を密封した石英ガラス円管（以下単にガラス棒と呼ぶ）が

![Fig. 1 Schematic of the experimental arrangement and (b) coordinate system.](image-url)
重力により加速下降することに、過渡的な接触線運動を作り出す体系を用いて行った。なお、これ以後、座標軸はFig. 1(b)に示すように初期の接触線位置を原点として水平方向および鉛直方向にx、y軸をとる。

ガラス棒はニューマスリングで支持された金属シャフトに固定されており、下降時における水平方向の運動や回転運動が抑えられる構造となっている。また、ガラス棒の上端にはニューマスリング支持構造の上部を経て測定水槽の背面にとどく糸が取り付けられている。この糸に鍵をつけることにより下降加速が調節される。ガラス棒下降前は鍵（鍵を用いない場合にはガラス棒上端に取り付けられたフランジ）が電磁石により保持され、その電磁石への通電を切ることでガラス棒の下降が開始される。

試料液体を保持する水槽の水平断面の内寸（60 mm × 56 mm）はガラス棒直径（$D_r=3$ mm）よりも十分大きく、ガラス棒の下降による液面の上昇は無視できる。接触部勾配計で測定されたガラス棒の算術平均粗さ（Ra）は0.01 μm程度であった。

試料液体にはエチレングリコールおよびその水溶液を用いた。水溶液の体積濃度は80 vol%および60 vol%とした。以下ではエチレングリコールの濃度に応じてEG100、EG80およびEG60と呼ぶ。各試料液体の物性値はTable 1に示すとおりである。温度は室温（21℃～24℃）で行った。

ガラス棒は実験前に超音波洗浄機を用いてよく洗浄した後、試料液体に数十分浸し、取り出したのに不織布により表面に付着した試料液体を拭拭した。最後に静電気除去を行った。これらのプロセスは再現性がもっとも高くなる様に決められたが、表面は完全にドライな状態ではなく一部の微小なキャビティ等に試料液体が残っていた状態になっていると考えられる。

測定は測定部後方から光を照射し、その光が界面で屈折されて作られた影の境界を高速度カメラで捉えて界面位置を検出するバックライト法で行った。撮影速度は10000 fps、シャッター時間は10^{-3} sとした。また、撮影空間分解能は8.6 μmとされた。界面位置は、界面近傍の輝度値の空間分布を多項式近似して得られた関数の最急勾配位置とした。ガラス棒表面の位置も同様の手法で測定した。ガラス棒の鉛直方向の運動はガラス棒内面に0.5 mm幅の目盛りをもつゲージを封入し、その目盛りの移動を上記と同様の方法で求めることで測定した。接触線の位置は、接触線近傍の界面を3次関数で近似し、得られた関数とガラス棒表面の交点とした。また、接触角は接触線から1ピクセルだけ離れた位置での上記近似関数の勾配値から算出した。なお、測定手法の制約のため、測定は概ねθ<70°の範囲で行った。接触線の速度は接触線位置の時間変化の差分から求めたが、データのばらつきが激しかったため、あらかじめ接触線位置の時間変化のデータを平滑化してから速度を求めた。

また、上記の過渡実験と比較するために、定常状態における動的接触角θdも測定した。測定はガラス棒をニューマスリングを用いて一定の速度で下降させることによって行った。測定値は125fpsの撮影速度で1-3秒間にわたって得られたデータを平均化して得た。撮影の空間分解能および界面検出法等は過渡実験と同様である。

各実験は各条件に対して異なるガラス棒およびガラス棒位置で複数回行った。

Table 1 Properties of the test liquids.

<table>
<thead>
<tr>
<th></th>
<th>EG100</th>
<th>EG80</th>
<th>EG60</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ [mN/m]</td>
<td>48.5</td>
<td>51.3</td>
<td>53.7</td>
</tr>
<tr>
<td>μ [mPa s]</td>
<td>20.3</td>
<td>12.7</td>
<td>8.7</td>
</tr>
</tbody>
</table>

![Fig. 2 Geometry of the simulation system.](image)
解析体系の大きさは水平方向，鉛直方向とも14mmとした．この値は本実験体系におけるラプラス長（-2.1 mm）よりも十分大きいため，体系端がメニスカスの形状や接触角に与える影響は無視できる．基本方程式は液体に対する非圧縮の運動量保存および質量保存式であり，上部気相による応力は無視した．対流項はKKスキーム[12]，粘性項は2次精度の中心差分法でスタガード格子状に離散化した．メッシュサイズは接触線近傍で最も細かく（過渡計算10，定常計算1.0 μm）なるような不等間隔配置とした．方程式はSimplified Marker And Cell（SMAC）[13]を用いて解いた．時間刻みは過渡計算2×10⁻⁸ s，定常計算5×10⁻⁸ sとした．

接触線の位置は計算領域外（ガラス棒内部）に設けられた仮想メッシュにおける液面位置とガラス棒表面（ｙ軸）に接する実メッシュでの液面位置を結んだ直線とガラス棒表面の交差する位置とし，接触角はその直線とｙ軸とのなす角度とした．この定義の場合，接触角はx=0点での値とみなされるが，予備計算の結果から，理論との比較等に基づいてガラス棒最近接メッシュのｙ方向中心となる位置の値と見なすこととした．仮想メッシュの液面位置の時間発展は，実験での接触角とV_Cの関係を多式多式近似して得られた式に各時間ステップにおける接触角の値を代入して求められるV_Cの値と仮想液面の変位から求められる接触線移動速度とが一致するように求めた．なお，本研究の場合，実験と数値解析における接触角の定義位置は一致しない．この点を解消するため，ここではこれらの定義位置が動的接触角の「中間領域」に相当すると考え，実験における動的接触角から解析で用いるべき動的接触角を式(1)を変形した以下の式で求めた．

\[\theta_d = \sqrt{\theta_o^2 + 9Ca \ln \left(\frac{x_n}{x_f} \right)} \] (2)

ここで添字のNおよびEはそれぞれ数値計算および実験における接触角定義位置での値であることを示す．ただし，式(2)において静止時の界面曲率（定常の場合は静水圧とラプラス圧から得られる曲率）による寄与項[8]は無視した．

3. 結果と考察
3.1 定常実験
Fig. 3に，試料液体にEG100を用い，ガラス棒を10 mm/sの一定の速度で下降させた実験における取得画像の一例を示す．Fig. 4にはこれらの画像から得られた定常接触角をV_Cおよび定常に対するCa数に対するプロットしたものを示す．この実験では接触線はほぼ実験室系に対して静止するため，接触線の相対速度V_Cはガラス棒の下降速度と等しくなる．図には3本の異なるガラス棒での結果がプロットされているが，3本の間の偏差はきわめて小さく，いずれも\(\theta_d \)はV_Cの増加にともない単調に増加している．なお，個々のプロットを得る際の時間平均処理での標準偏差は1.5°程度であった．

図中の実験はこれらのプロットに対して，実験的に得られた定常動的接触角の関数形としてしばしば用いられるHoffman-Voinov-Tannerの半数値[14]
Fig. 5 Obtained back-light image for the transient experiment for EG100 with the acceleration of glass rod of 9760 mm/s² at (a)t=0 ms (initiation of the rod motion), (b)6 ms and (c)12 ms.

\[
\theta_d = \sqrt[3]{\theta_0^3 + K \cdot Ca}
\]

Fig. 6 Time trends of vertical position of the contact line, glass rod, \(V_{CR} \) and \(\theta \) obtained from the experiment shown in Fig. 5 (EG100 with the acceleration of glass rod of 9760 mm/s²).

Fig. 7 Transient dynamic contact angle vs \(V_{CR} \) for EG100.
面の微小な揺動によって接触線が一時的に最終
10 mm/s以上の領域とやや傾向が異なるが、これ
この図から、ガラス棒加速時の過渡接触角
った接触角のフィッティング値
標準偏差を表す。また、図中には定常実験で得られ
Fig. 8 Transient dynamic contact angle vs V_{CR} for EG60.

Fig. 9 Transient dynamic contact angle vs V_{CR} in the case of $A_g=9000$ mm/s².

速度にもばらつきがみられた。そこで Fig. 7 では実験を 3 つのガラス棒加速速度 A_g (2000~4000
mm/s²（以下「3000 mm/s²」と呼ぶ）、4000~8000
mm/s²（同「6000 mm/s²」）、8000 mm/s²以上（同「9000
mm/s²」））ごとに分類し、それをV_{CR}について
1 mm/s 刻みで平均化したものをプロットした。プロ
ットの誤差棒は平均化を行った際の各データの
標準偏差を表す。また、図中には定常実験で得られ
る接触角のフィッティング値$	heta_d$も実線で示す。
この図から、ガラス棒加速時の過渡接触角$	heta_d$がガ
ラス棒の加速速度に依存していることが明確にわか
る。すなわち$	heta_d$=ガラス棒加速速度が大きくなる
にしたがって定常値から離れて小さくなっており
定常と過渡時の値は最大で約 20°に達して
いる。なお、$V_{CR}<10$ mm/s の領域での$	heta_d$は$V_{CR}$が
10 mm/s以上の領域とはやや傾向が異なるが、これ
は実験開始前の静止状態を作る際に発生した液
面の微小な揺動によって接触線が一時的に最終
静止位置よりもおそらく上がりガラス棒表面を滑
らした部分があったためと考えられる。

Fig. 8 は同様の実験を EG60 で行ったときの結
果である。これをみると EG100 の結果（Fig. 7）
と定性的に同様の傾向を示しているが、定常値と
過渡値の偏差は最大でも 10°未満と EG100 の場合
に比べて小さく、ガラス棒加速速度に対する依存性
も小さい。EG60 と EG100 とは表面張力は 10%
程度しか異ならないが粘度は EG60 が EG100 の半
分以下であることから、この違いは主に粘度の差
によってもたらされたものと考えられる。

試料液体による差をより明確にするために、
$A_g=9000$ mm/s²のケースについての比較を行った。
その結果を Fig. 9 に示す。図には各液体の定常時
の$	heta_d$も示すが、$	heta_{cr}$を比べ、試料液体への依存
性がかなり小さくなっていることがある。

3.3 目視的スケール現象の過渡効果
これらの接触角に対する過渡の効果の発生メカ
ニズムを検証するために、測定分解能（8.6 μm）
よりも壁面に近い領域と遠い領域とに分けて、そ
のいずれの領域での効果が大きいかを検証した。
本節では測定分解能よりも外方の領域およびさ
らに接触線から離れた領域での流体力について
検討する。

この領域では過渡時の接触角のずれに寄与す
る可能性がある流体力は粘性のほか、過渡項
($\rho u / \partial t$) および遠方の静止界面形状の違いによ
る静水頭（重力項）である。これらの効果は界面
での曲率

$$k = \frac{h''}{(1 + h'^2)^{3/2}} + \frac{h'}{(x + D_{cr}^2)(1 + h'^2)}\tag{4}$$

に表れるものと考えられる。ここで h は自由表面の
鉛直方向位置を、h' およびh'' はdh/dx および
$\partial^2 h/\partial x^2$ を表す。しかしながら実験で得られ
る界面形状から上式に含まれる高次の微分項を従
る際には測定精度上困難であるため、ここでは数値
解析を用いて評価することとした。

まず、数値解析の精度を検証するために、定常計
算の実施および理論値との比較を行った。計算は
3.1 節で示した定常実験でのV_{CR} と$	heta_d$ の関係式を
式(2)で変換したものを接触角に関する境界条件
として行った。V_{CR} は 10 mm/s とし、計算の物理
時間は 1s とした。なお、鉛直ガラス棒の運動は計算開始から 0.05 s 間で 10 mm/s まで加速させ、その後は 10 mm/s 一定とした。着目する x < 1 mm での界面形状は概ね 0.2 s 以内に定常に達した。一方、理論値における曲率分布は、界面での垂直応力のバランスから得られる曲率の式

\[\kappa = \frac{-2la \sin \theta(x)}{x[\theta(x) - \sin \theta(x) \cos \theta(x)]} \]

と式(4)から \(\kappa \)を消去して得られる h についての常微分方程式を 4 次のルンゲクッタ法で \(x = 1 \) mm から数値積分することで求めた。なお、式(5)は第 1 項が粘性力、第 2 項が重力による寄与を表しており、第 1 項は接触線近傍を模したくさび状流れを Stokes 近似下で流れ関数を用いて解くことから導かれる[15]。

Fig. 10 に得られた界面曲率の分布を示す。x が 0 に近づくにしたがって曲率が大きくなっていくことがわかる。図から本数値計算は理論値とよく一致しており、こののちの解析に十分な精度を有していることが確認された。計算結果のプロットのうち x の小さい方から 2 点は理論値からのずれがやや大きいが、これは体系端近傍で各物理量の微分を差分式で求める際の数値誤差によって考えられる。

過渡実験を模擬した数値解析も同様の手法で行った。ここでは EG100 を用いた実験のうち \(A_c = 9000 \) mm/s² に分類される実験結果を一つ選びだし、その実験での \(V_{CR} - \theta_z \) の関係を多項式で近似したものを接触角の境界条件として用いた。また、ガラス棒の運動については実験でのガラス棒の速度変化の測定値を縦形近似したものを用いた。Fig. 11 に得られた接触線位置および接触角の時間変化を実験結果と併せて示す。図に示すように、数値計算の方がやや接触線の下降が速いのが、概ね数値計算は実験を再現している。この計算における静止時および \(V_{CR} = 10 \) mm/s, 20 mm/s となったときの界面形状を Fig. 12 に示す。図には実験結果も併せて示すが、\(V_{CR} = 20 \) mm/s の時の \(x < 0.5 \) mm の領域において計算結果が実験結果をやや下回っているほかは両者はきわめてよく一致しており、過渡状態についても本計算が実験を正しく再現することが示された。

この結果に基づき、過渡項が界面形状に与える影響の抽出を行った。抽出は、過渡実験を模倣し
た数値計算から得られた界面形状の曲率のうち、静水圧による寄与分を引くことにより過渡項と粘性項の寄与の部分（\(\kappa_{\text{tr}}\)とする）を理論定常値と比較し、両者の偏差を検討することで行った。なお、理論定常値で用いる接触角は模擬している過渡実験における\(V_{\text{CR}}\)−\(\theta\)の関係から得られる値を用いた。

Fig. 13 に\(V_{\text{CR}}=10\ mm/s\) および 20 mm/s の時の \(\kappa_{\text{tr}}\) の分布を示す。いずれの結果とも \(x\) の減少に伴って \(x\) に逆比例して増加する粘性項の影響により増加している。数値計算結果は\(x<10^{-2}\ mm\) では理論定常値と非常に良く一致しているが\(x>10^{-2}\ mm\) の領域ではずれている。このことは過渡項によるものであるが、ずれがこの領域 \(x>10^{-2}\ mm\) に限られていることは、ガラス棒が加速することによって発生する流体の加速（過渡項）の影響は \(x>10^{-2}\ mm\) で顕著となることを示している。また、\(x<10^{-2}\ mm\) の領域で得られる数値計算と理論定常値のわずかな差異（\(V_{\text{CR}}=20\ mm/s\) のケースで \(x=10^{-3}\ mm\) において \(\pm 0.5\ mm\)) は、定常時の接触角に基づいた理論定常値とこの図で示した理論定常値（過渡時の接触角に基づく）との差（\(x=10^{-3}\ mm\) において \(\pm 5\ mm\)) よりも小さかった。すなわち、流体の過渡運動は実験における固体の（微視的スケールの）ごく表面から接触角測定点（\(x=8.6\ \mu m\)）の間の界面形状（そこでは粘性の効果が卓越）には影響を与えておらず、過渡時の接触角の定常時からのずれの主要因とはなっていない、ということがわかる。

また、図には示されていないが、静水圧による寄与は \(x<10^{-2}\ mm\) では \(10^{-1}\ mm\) のオーダーでほぼ一定であり、接触線近傍の形状にはほとんど影響を及ぼしていなかった。

これらのことから、過渡実験における接触角の定常値からのずれは、本数値計算モデルで考慮できていない要因、すなわち、微視的接触角の速度依存性が変化したことが原因であることが示唆される。

3.4 微視的スケール現象の過渡効果

式(1)に基づけば微視的スケールでの挙動は微視的スケールの代表長さ \(l_m\) と微視的接触角 \(\theta_m\) で表される。しかし、これらの物理量については分子動力学を用いた解析的研究もおこなわれているものの[16-18]、その詳細は未だ不明である。このため、多くの場合、便宜的に両者は一定の値とされ、特に \(\theta_m\) については式(3)の経験式を用いて静止接触角に等しいと仮定されることが多い。

しかし Raméら[19]が実験的に示しているように、\(l_m\) と \(\theta_m\) のどちらかはいずれも \(l_m\) の大きい \(l_m\) の影響を受け、さらに \(\theta_m\) に関しては式(3)の経験式で定義されることは明らかである。そこで、ここでは \(l_m\) を分子スケールの大きさとして \(1\ \mu m\) で固定し、そのときの \(\theta_m\) と \(\theta\) の差を\(\theta_{\text{m}}\) と呼ぶ。すなわち、

\[
\theta_{\text{m}} = \theta_{\text{v}}(\text{Steady state})
\]

}\[19\]

Fig. 14 に \(A_1=9000\ mm/s^2, A_2=6000\ mm/s^2, A_3=3000\ mm/s^2\) および \(\theta_\theta(\text{Steady state})\) を示す。これより、

\[
\theta_{\text{m}} = \theta_{\text{v}}(\text{Steady state})
\]

\[
\theta_{\text{m}} = \theta_{\text{v}}(\text{Steady state})
\]
Fig. 15 Microscopic dynamic contact angle for $A_c=9000 \text{ mm}^2$. Here $V_c=10 \text{ mm/s}$ でそれぞれθ_mの値が変化しているが、これは3.2節で述べたようにこれよりもV_cが高い領域では局所の液膜の影響があったためと考えられる。一方、それよりもV_cの大きな領域については$A_c=3000 \text{ mm}^2$のケースではほぼ定常値に近い値となっているが、それ以外のケースでは傾き、値とも定常値に比べて明らかに小さい。本実験ではθ_1およびθ_2は時間的にほぼ単調増加しているので、過渡実験におけるθ_mが定常時よりも小さかったとは、細胞の力学的バランス等の変化による接触角の減少のみでなく、V_cの増加から要求されるθ_mの時間的増加に対してもは定常値に近い値となっているが、それ以外の領域についてはこれらの取り方に依存する最低の値が低い領域で接触線の未満である。また、これとは異なるメカニズムとして、静止時に形成される部分的な液膜の存在を考えられる。前進する接触線の前方に液膜が存在する場合には（見かけの）接触角はゼロに漸近すると考えられ、実験結果において過渡実験時のθ_mが定常時よりも小さかったことは定性的に説明される。また、本実験での固体上での接触線の相対移動距離は1 mm未満であり、そのような短い距離であるならば全表面積に占める割合は小さくともごく部分的な液膜が表面凹凸の溝部分での毛細管力により伸長した可能性は否定できない。しかしながらFig. 7やFig. 14などでは液膜の先端を超えたことによると思われるθ_mの階段状変化が比較的明確に表れており、これよりさらには遠方（すなわちV_cが大きくなくなってから接触線が通過する領域）でも液膜が存在していたかどうかは今回の実験では確認できなかった。

今後これらの視観的スケールにおける詳細メカニズムが解明される必要がある。

4. まとめ
接触線が過渡運動する際の前進接触線における動的接触角挙動を明らかにするため、試料液体の自由界面と垂直に交差するように設置した鉛直棒の加速運動を用いた実験および数値解析を行った。以下に得られた知見をまとめる。
（1）鉛直棒が加速運動する際の接触角は定常的な接触角よりも小さな値となった。また、その傾向は加速度が大きくなるほど顕著となった。
（2）試料液体の粘度が小さくなると加速度の影響は小さくなった。
（3）数値計算から、流体が加速運動することによる接触角への寄与は小さいことが示された。また、重力の影響も小さかった。これらのことと、巨視的領域での流体運動や外力が接触角を与える影響は小さく、微視的領域での現象が過渡時の接触角のずれの原因である可能性が示された。
（4）微視的接触角も加速度への依存性を示した。また、微視的接触角に作用している因子は、粘性に依存し、かつ微視的接触角を低下させるか、または微視的接触角の時間的変化（増加）をより砂オーダーで遅延させる現象であると考えられる。しかしその詳細は明らかにされなかったので今後解明する必要がある。

謝辞
本研究の一部は（公財）立松財団の援助を受けて行われた。ここに記して謝意を表す。

記号
\(A_c \) : acceleration of the glass rod [m/s\(^2\)]
\(C_a \) : capillary number [-]
\(V_c \) : contact line velocity relative to the solid [m/s]
\(x \) : horizontal distance from the glass rod surface [m]
\(y \) : vertical distance from the contact line [m]
\(g \) : gravitational acceleration [m/s\(^2\)]
\(l_m \) : microscopic length scale [m]

ギリシャ記号
\(\mu \) : viscosity [Pa·s]
\(\rho \) : density [kg/m\(^3\)]
\(\sigma \) : surface tension [N/m]
\(\theta \) : contact angle [rad or degree]
\(\theta_d \) : steady-state dynamic contact angle [rad]
\(\theta_t \) : transient dynamic contact angle [rad]
\(\theta_m \) : microscopic contact angle [rad]

参考文献
それにより、私自身、来年度からは原子力分野に職を得ることとなりました。これまでの研究生活で培っていた知識が、今後の研究に役立つものと感じております。それでもなお、大変な運命に直面していることも忘れずに、研究を進めてまいります。

さらに、大阪は全国からあらゆる食文化が栄えております。道頓堀付近を一回散策し、終日観光客の行列が絶えませんでした。本場のお好み焼き・たこ焼きを頂きました。元気な食事の後、大阪ホストとの交流に深く感謝申し上げます。また、日本混相流学会の関係者の皆様に深く感謝申し上げます。

おわりに、学での研究が、今回の事態を学生ながらに重く受けております。世界が動く中での研究で、私の役割を果たしていきます。