A Potential Role of Bradykinin in Angiogenesis and Growth of S-180 Mouse Tumors

Keiko Ishihara¹, Izumi Hayashi¹,², Shohei Yamashina³ and Masataka Majima¹,²,*

¹Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
²Department of Pharmacology and ³Department of Anatomy, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan

Received December 25, 2000 Accepted October 3, 2001

ABSTRACT—Angiogenesis is an important event in tumor growth. We evaluated the contribution of endogenous bradykinin to tumor-associated angiogenesis and tumor growth using pharmacological approaches in mice bearing sarcoma 180 cells. The weight of implanted tumors increased in parallel with increased hemoglobin contents (a parameter to evaluate angiogenesis) over a 20-day experimental period. Daily administration of bradykinin B₂-receptor antagonists, Hoe140 (0.1 and 1 mg/kg per day, local injection) or FR173657 (30 mg/kg per day, p.o.), significantly suppressed the increment in angiogenesis and tumor weight, but a B₁-receptor antagonist, desArg¹⁰-Hoe140 (1 mg/kg per day), did not. Administration of a plasma kallikrein inhibitor, soybean trypsin inhibitor (3 mg/site per day), significantly suppressed angiogenesis and tumor growth. In contrast, bradykinin-degrading enzyme inhibitors, captopril and phosphoramidon (500 μg/site per day), enhanced angiogenesis and increased tumor weight. Our results suggest that bradykinin, produced by plasma kallikrein or plasma kallikrein-like enzymes, promote tumor-associated angiogenesis and tumor growth in vivo.

Keywords: Angiogenesis, Kallikrein-kinin system, Bradykinin B₂ receptor, Kallikrein, Sarcoma 180

Several groups have established the enhancing role of angiogenesis on tumor growth. For example, it has been demonstrated experimentally that tumors do not grow beyond a size of 2 – 3 mm³ unless they are able to attract the growth of new vessels from the existing vascular network (1 – 3). Apart from their importance for tumor growth, the new blood vessels provide an essential entry route for metastatic tumor cells. It is likely that the excess supply of oxygen and various plasma components including growth factors and fibrinogen facilitate tumor growth and angiogenesis (4, 5). The significance of angiogenesis has been demonstrated also by several clinical studies; enhanced neovascularization is a poor prognostic factor in breast cancer (6), cervical cancer (7) and bladder cancer (8). Therefore, one of the primary targets for tumor chemotherapy is perhaps the inhibition of angiogenesis.

Bradykinin (BK) is a potent, biologically active peptide with several functions such as vasodilation, increased vascular permeability, pain sensation, regulation of glomerular filtration rate and excretion of sodium from the kidney (9, 10). Thus, BK is considered to be involved in various pathological states, including inflammation (11, 12), shock (13, 14), hypertension (15, 16) and airway diseases (17). Recent studies have demonstrated that BK stimulates angiogenesis in vivo (18). Although BK is also thought to enhance vascular permeability in tumors and promote tumor growth (19, 20), its involvement in enhancement of angiogenesis and consequently tumor growth has not been fully elucidated.

The aim of the present study was to investigate the role of endogenous BK in tumor-associated angiogenesis and tumor growth in tumor-bearing mice. By using selective bradykinin receptor antagonists, kallikrein inhibitors and kininase inhibitors, we suggested the significant role of BK in angiogenesis and tumor growth in mice, which were subcutaneously implanted with sarcoma 180 cells.

MATERIALS AND METHODS

Animals

Male 5-week-old ICR mice (SLC Japan, Hamamatsu)
were used in the present experiment. All mice were housed at a controlled humidity of 60 ± 3% and temperature if 25 ± 1°C, with a 12-h light/dark cycle. Experiments were performed in accordance with the Guideline Principles for the Care and Use of Laboratory Animals of the Animal Care Committee of Kitasato University.

Antagonists and protease inhibitors

The bradykinin B₂-receptor antagonist d-Arg[Hyp³, Thi⁵, D-Tic⁷, Oic⁹] bradykinin (Hoe140) was purchased from Peptide Institute (Osaka) (21), and FR173657 ((E)-3(6-acetamido-3-pyridyl)N-[N-[2,4-dichloro-3-[(2-methyl-8-quinolinyl) oxymethyl] phenyl]-N-methylaminocarbonyl-methyl]acrylamide) was kindly provided by Fujisawa Pharmaceutical Co. (Osaka) (22). The B₁-receptor antagonist desArg⁹d-Arg[Hyp³, Thi⁵, D-Tic⁷, Oic⁹] bradykinin (desArg⁹[Hoe140]) (23) was obtained from Peninsula Laboratories (San Carlos, CA, USA). Capropril, an inhibitor of angiotensin converting enzyme (ACE) that is also known as a kinin-degrading enzyme, kininase II, was a gift from Sankyo Pharmaceutical Co. (Tokyo). Phosphoramidon was purchased from Peptide Institute (Osaka) and known as a kinin-degradating enzyme, kininase II, was a gift from Sankyo Pharmaceutical Co. (Tokyo). Phosphoramidon was purchased from Peptide Institute (Osaka) and MGPA (D₁,1-2-mercaptomethyl-3-guanidinoethyl-thiopropionic acid) was purchased from Calbiochem (La Jolla, CA, USA). Soybean trypsin inhibitor (SBTI) (Worthington Biochemical, Cleveland, OH, USA) and aprotinin (Wako Pure Chemical Industries, Osaka) were also used as kallikrein inhibitors. Hoe140, desArg⁹-[Hoe140], SBTI, aprotinin, capropril, phosphoramidon and MGPA were dissolved in sterilised physiological saline.

Cell culture

The murine sarcoma 180 (CCL-8, S-180) tumor cells were purchased from Dainippon Pharmaceutical Co. (Osaka). S-180 cells were cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum. The cells were harvested then washed three times with phosphate buffered saline (PBS; NaCl at 8 g/l, KCl at 0.2 g/l, NaHPO₄·12H₂O at 2.9 g/l, KHPO₄ at 0.2 g/l). The cells were resuspended by brief centrifugation at 300 × g at 25°C. The supernatant was aspirated, and the cells were resuspended in PBS and counted using a hemocytometer.

Tumor-bearing mice

The dorsal hair of mice anesthetized lightly with ether was shaved and the skin was disinfected with 70% ethanol. S-180 cells were suspended in PBS at a density of 2 × 10⁷ cells/ml, and 0.1 ml of the suspension was injected into the dorsal subcutaneous tissue of each mouse using a 25-gauge needle. The day of injection was defined as day 0. At designated experimental days after the injection of S-180 cells, the animals were sacrificed and the hemoglobin contents in tumor tissues and tumor weight were determined as described below. From day 1, FR173657 was administered orally (10 and 30 mg/kg, suspended with 5% gum Arabic at 6 mg/ml, twice a day) to solid tumor-bearing mice. Control mice were administered 5% gum Arabic solution. Hoe140 (0.01 – 1 mg/kg, suspended with sterile physiological saline at 200 μg/ml), desArg⁹-[Hoe140] (1 mg/kg, suspended with sterile physiological saline at 200 μg/ml), SBTI (0.3 – 3 mg/site), aprotinin (1,000 U/site), capropril (500 μg/site), phosphoramidon (500 μg/site), MGPA (500 μg/site) and Hoe140 (1 mg/kg, suspended with sterile physiological saline at 200 μg/ml) were injected locally around tumors once a day. Sterile physiological saline (3 ml/kg/site) was injected in control mice.

Quantification of angiogenesis and tumor growth

Mice were sacrificed with excess dose of ether and tumor tissues were excised from the back for evaluation of tumor growth. The tumor was weighed immediately after harvesting and hemoglobin contents were determined using the following method. Excised tumor tissues were homogenized in distilled water using four times the weight of the tumor tissue, in a Polytron homogenizer (Kinematica, Luzern, Switzerland). After centrifugation at 5,000 × g for 30 min at 4°C, the hemoglobin concentration in the supernatant was measured using a commercial hemoglobin assay kit (Hemoglobin B Test Wako, Wako Pure Chemical Industries). The hemoglobin contents of tumor tissues were expressed as mg/g wet tumor tissue.

Histology

Tumor tissues together with the stroma were excised from the back of mice and immediately fixed with 10% formalin at 4°C. Thin paraffin sections were prepared for von Willebrand factor (vWF) immunostaining and for routine staining with hematoxylin and eosin. For immunohistochemical staining, deparaffinized sections were treated with proteinase K (Dako Japan, Kyoto) for 6 min at room temperature and then incubated with anti-vWF polyclonal antibody (Dako Japan) overnight at 4°C, followed by the treatment with anti-rabbit IgG polyclonal antibody. For quantitative studies, four randomly selected sections were photographed on 35-mm film using a ×10 objective lens and the number of microvessels per field (1.8 mm²) was counted. The relative lumen area (%) of microvessels in the same photographs was also quantified using NIH image software.

Statistical analyses

Data are shown as the mean ± S.E.M. The statistical difference between two groups was examined using unpaired Student’s t-test. Multiple comparisons were performed by using one-way ANOVA with Bonferroni’s
correction. A P value of less than 0.05 was considered statistically significant.

RESULTS

Hemoglobin contents in tumor tissue

Figure 1A shows a significant correlation ($r=0.837$, $P<0.0001$) between hemoglobin contents and number of microvessels in the tumor tissues, which were isolated from mice at days 6, 7 and 12. As shown in Fig. 1B, there was also a linear relationship between hemoglobin contents and the relative lumen area of microvessels ($r=0.887$, $P<0.0001$). Thus, in the present study, we evaluated tumor-associated angiogenesis using hemoglobin contents.

Time-course of tumor-associated angiogenesis and tumor growth in tumor-bearing mice

S-180 tumor cells were inoculated into the dorsal subcutaneous space of each mouse, and tumor growth and tumor-associated angiogenesis were quantified at days 5, 10, 15 and 20 after inoculation. As shown in Fig. 2, tumor weight increased gradually in parallel with hemoglobin contents over 20 days of the experimental period.

Effect of BK receptor antagonists on tumor-associated angiogenesis and tumor growth

To examine the involvement of BK in angiogenesis and tumor growth in our model, a B₁-receptor antagonist, desArg¹⁰-[Hoe140], and B₂-receptor antagonist (Hoe140 and FR173657) were administered to S-180-bearing mice from the day of tumor inoculation. As shown in Fig. 3: A and B, both angiogenesis and tumor growth were significantly suppressed by administration of Hoe140 at doses of 0.1 mg/kg per day or higher in S-180-bearing mice. Furthermore, as shown in Table 1, FR173657 (10 and 30 mg/kg per day, p.o., twice daily) also attenuated angiogenesis and tumor growth in a dose-dependent manner, giving a % inhibition of about 50% at 30 mg/kg per day as compared with the control group. On the contrary, desArg¹⁰-[Hoe140] did not have any effects on angiogenesis and tumor growth at 1 mg/kg per day (once daily, local injection) (Figs. 3: C and D).

Effect of kalikrein inhibitors on tumor-associated angiogenesis and tumor growth

BK is produced from kininogens by tissue and/or plasma...
To examine which enzyme is involved in the generation of BK in our model, we examined the effects of two kallikrein inhibitors. As shown in Fig. 4, both angiogenesis and tumor growth were significantly suppressed by administration of SBTI, which inhibits plasma kallikrein, but not tissue kallikrein (24, 25), at doses exceeding 1 mg/site per day. Additional administration of aprotinin (an inhibitor of both tissue and plasma kallikreins (24, 25), at 1,000 U/site per day) did not induce further suppression of angiogenesis and tumor growth. No additive inhibition on the hemoglobin contents and tumor weight was observed following coadministration of SBTI (3 mg/site per day) and aprotinin compared with SBTI alone.

Fig. 3. Effects of bradykinin-receptor antagonists on tumor angiogenesis and tumor growth in the tumor-bearing mice. Sarcoma 180 cells were inoculated into the dorsal subcutaneous tissue of mice. At day 6, tumors were excised and the hemoglobin (Hb) contents (A and C) and their weight (B and D) were determined. A B1-receptor antagonist, desArg10-Hoe140, was injected locally once a day (1 mg/kg per day) and a B2 receptor antagonist, Hoe140, was injected locally once a day (0.01–1 mg/kg per day). Open columns represent control mice, which received only the vehicle solution. Values are the mean ± S.E.M. of five mice. *P<0.05, **P<0.01 vs vehicle control.

Table 1. Reduction in angiogenesis and tumor weight by B2-receptor antagonist in tumor-bearing mice

<table>
<thead>
<tr>
<th>Dose (mg/kg, p.o.)</th>
<th>Hb contents</th>
<th>Tumor weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>inhibition (%)</td>
<td>day 6</td>
</tr>
<tr>
<td>Hb contents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>19.0 ± 8.7%</td>
<td>n.d.</td>
</tr>
<tr>
<td>30</td>
<td>58.4 ± 7.7%*</td>
<td>42.4 ± 11.5%*</td>
</tr>
<tr>
<td>Tumor weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>27.9 ± 8.5%</td>
<td>n.d.</td>
</tr>
<tr>
<td>30</td>
<td>50.0 ± 9.0%*</td>
<td>40.7 ± 9.3%*</td>
</tr>
</tbody>
</table>

FR173657, a bradykinin B2-receptor antagonist, was orally administered twice a day for 6 or 12 days. Values are the mean ± S.E.M. of 5 mice. n.d. = not determined. *P<0.05 vs vehicle control.
Histological evaluation of effects of a B₂-receptor antagonist and kallikrein inhibitors

The formation of new blood vessels in developed tumor tissues and encapsulation of tumor stroma were confirmed by microscopic examination. As shown in Fig. 5A, the tumor was surrounded by a well-developed stroma tissue mainly composed of fibroblast-like cells, together with matrix formation. Most microvessels were localized within the stroma tissue. These microvessels were not uniformly distributed in the stroma and a cluster of vessels was often observed. In contrast, the number of newly formed vessels was markedly reduced in tumor tissues treated with FR173657 (30 mg/kg per day) (Fig. 5B) or SBTI (3 mg/site per day) (Fig. 5C).

Effect of kininase inhibitors on tumor-associated angiogenesis and tumor growth

As shown in Fig. 6: A and B, daily local injection of captopril (a kininase II inhibitor, 500 μg/site per day) enhanced angiogenesis by 120% and increased tumor weight by 90%, respectively, compared with those of the vehicle control group. On the other hand, additional administration of Hoe140 (bradykinin B₂-receptor antagonist, at 1 mg/kg per day) significantly suppressed the angiogenesis and tumor growth (Table 2).

Phosphoramidon (a neutral endopeptidase inhibitor (26), 500 μg/site per day) but not MGPA (a kininase I inhibitor (27)), significantly promoted angiogenesis (Fig. 6A).

DISCUSSION

In the present study, we suggested that BK plays an important role in tumor-associated angiogenesis and tumor growth. Although the involvement of BK in ascitic fluid accumulation in ascitic tumor has been reported (19, 20, 28), the present study is the first report demonstrating the roles of BK in tumor-related angiogenesis. As shown in Fig. 3 and Table 1, Hoe140 and FR173657, selective bradykinin B₂-receptor antagonists, dose-dependently suppressed tumor growth together with angiogenesis. By contrast, blockade of B₁ receptors with a selective antagonist, desArg¹⁰-[Hoe140], did not result in significant inhibition. These results suggest that BK may be involved in angiogenesis and tumor growth via the B₂ receptor. The significance of endogenous BK was also suggested from the present results showing that inhibition of BK degradation by captopril or phosphoramidon enhanced both angiogenesis and tumor growth (Fig. 6). Because kininase II and neutral endopeptidase are major enzymes responsible for BK degradation in the connective tissue of normal mouse.

Fig. 4. Effects of kallikrein inhibitors on angiogenesis and tumor growth in tumor-bearing mice. Sarcoma 180 cells were inoculated into the dorsal subcutaneous tissue of each mouse. At day 7, tumors were excised and the hemoglobin contents (A) and the tumor weight (B) were determined. SBTI (plasma kallikrein inhibitor, 3 mg/site per day) and aprotinin (plasma and tissue kallikrein inhibitor, 1,000 U/site per day) were administered locally once daily for 7 consecutive days. Open columns represent control mice. Values are the mean ± S.E.M. of five mice. *P<0.05, **P<0.01 vs vehicle control. Hb: Hemoglobin. SBTI: Soybean trypsin inhibitor.
It is plausible that inhibition of BK degradation by these inhibitors may elevate the tissue levels of BK, and thus facilitate angiogenesis in our model.

Whether BK could directly induce proliferation or migration of vascular cells such as endothelial cells, smooth muscle cells or fibroblasts (pericytes) is still controversial (30–33). BK promotes the growth of endothelial cells from post-capillary venules in vitro (34). However, this proliferation of venular endothelial cells is mediated by the B1 receptor, not by the B2 receptor. Because tumor angiogenesis is mainly mediated by the B2 receptor as shown in Fig. 3 in the present study, it is unlikely that the B1-dependent mitogenic activity of BK is involved in tumor angiogenesis in our model. The mitogenic activity of BK on other cell types is not clear, as it depends to a large extent on the culture condition (32). In our preliminary experiment, the growth of S-180 cell in...
vitro did not respond to BK (data not shown). Thus, the
direct proliferative action of BK may not be involved in
tumor growth and angiogenesis in the present in vivo
model.

As shown in Fig. 3, our results suggest that the B₂ receptor
is involved in angiogenesis and tumor growth, because
a selective antagonist for the B₂ receptor, but not the B₁
receptor, suppressed angiogenesis and tumor growth. Most
of the factors that induce vascular hyperpermeability are
also known as angiogenic factors (35–38). BK is one of
the most potent mediators of vascular hyperpermeability,
and this action is mediated by the B₂ receptor constitutively
expressed on the endothelium (39). In addition to the
present results, generation of BK has been demonstrated in
cancerous ascitic fluid (19) and the role of BK in enhancing
vascular permeability is also shown in solid and ascitic
tumors (20). Therefore, it is likely that BK-induced angiogenesis in tumor tissues demonstrated in our study could
be partly dependent on the increased permeability of
tumor vasculature. On the other hand, Hu and Fan reported
that BK-induced angiogenesis in the sponge granulation
tissue in rats is not mediated by the B₂ receptor (18). The
reason for this discrepancy is not clear.

As shown in Figs. 3 and 4, inhibitory effects on tumor
growth were more prominent than those on tumor angiogenesis. The most plausible explanation for the difference
is that bradykinin facilitates tumor growth via at least two
different pathways, angiogenesis-dependent and -independent ones. It is possible that BK may stimulate the proliferation of
tumor cells directly or indirectly via up-regulation of
growth factors or cytokines. BK-induced vascular hyperpermeability might be also implicated in tumor growth because enhanced vascular permeability induces extra-
vasation of blood-derived factors including nutrients or
plasma proteins. We also evaluated BK generating systems
involved in our experiments. As shown in Fig. 5, SBTI, a plasma kallikrein inhibitor, inhibited angiogenesis and
tumor growth in a dose-dependent manner, and maximum inhibition was obtained at a dose of 3 mg/site per day.

Co-administration of aprotinin, which inhibits both plasma and tissue kallikreins, with the highest dose of SBTI
(3 mg/site per day) did not exhibit further inhibition. These results suggest that plasma kallikrein or plasma kallikrein-
like enzymes, which are sensitive to SBTI, are mainly implicated in the generation of BK in our experiment.

Seemingly contradictory effects of ACE inhibitors on angiogenesis have been reported. Captopril is shown to
inhibit angiogenesis in experimental tumors in rats and in
human Kaposi’s sarcoma (40, 41). On the contrary, Cameron et al. (42) and Maxfield et al. (43) suggested that there was an increase in capillary density in sciatic nerve and in extensor digitorum longus muscle with an
ACE inhibitor, lisinopril. Furthermore, long term treatment
with spirapril, another ACE inhibitor, in adult spontaneously hypertensive rats resulted in a 28% increment in
the number of coronary capillaries per unit area in left
ventricle (44). Thus, effects of ACE inhibitors (that is,
kininase II inhibitors) on angiogenesis are different and
the precise reason for the discrepancy of the effects of
ACE inhibitors is uncertain. It is plausible that the effects
of ACE inhibitors differ, depending on the animal models
used or experimental conditions. Gohlke et al. have shown
that BK is implicated in the ACE inhibitor-induced increase
in cardiac angiogenesis in stroke-prone spontaneously
hypertensive rats because blockade of BK B₂ receptors
prevents the increase in cardiac capillary density induced by ramipril (45). The present results have also shown that
angiogenesis associated with S-180 tumor growth was
enhanced by the treatment with captopril and was attenuated
by inhibition of the kallikrein-kinin system. We also
confirmed that increased angiogenesis by captopril was
cancelled by the simultaneous treatment with a B₂-receptor
antagonist (Table 2). Taken together, it seems likely that
in circumstances where BK production is enhanced, ACE
inhibitors may promote angiogenesis through inhibition of
BK degradation. In contrast, ACE inhibitors would prevent neovascularization by inhibiting generation of angiotensin
II, known as an angiogenic factor, probably when the tissue
renin-angiotensin system is up-regulated. Recently, Volpert
et al. suggested that inhibition of angiogenesis by captopril
would be mediated through the direct inhibition of zinc-
dependent endothelial cell-derived 72- and 92-kD metallo-
proteinases (MMPs) (40). It is not clear that inhibition of
these MMPs would be involved in the effects of captopril
in our model. Further studies are necessary to elucidate
the effects of captopril on angiogenesis and the underlying
mechanisms.

In the present study, angiogenesis was evaluated by the
hemoglobin contents contained in the tumor tissues. Several
reports have suggested a discrepancy between the hemoglo-
bin contents and the extent of angiogenesis in solid
tumor tissues and pointed out the possibility of overestima-

Table 2. Effect of kininase inhibitor and B₂-receptor antagonist on
tumor-associated angiogenesis and tumor growth

<table>
<thead>
<tr>
<th></th>
<th>Hb contents (mg/g wet tissue)</th>
<th>Tumor weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>3.63 ± 0.28</td>
<td>0.66 ± 0.09</td>
</tr>
<tr>
<td>Captopril</td>
<td>5.82 ± 0.61*</td>
<td>0.97 ± 0.09*</td>
</tr>
<tr>
<td>Captopril + Hoe140</td>
<td>2.58 ± 0.27*</td>
<td>0.34 ± 0.02*</td>
</tr>
</tbody>
</table>

Captopril (500 μg/site per day) and Hoe140 (1 mg/kg per day), a
bradykinin B₂-receptor antagonist, were administered locally once
da day for 7 consecutive days. Values are the mean ± S.E.M. of 5 mice.
*P<0.05 vs vehicle control. **P<0.01 vs captopril alone. Hb: Hemo-
globin.
nation of angiogenesis because of the erythrocyte-rich plug formation in tumor vasculature due to enhanced production of tissue factor by tumor cells (46 – 48). Taking account of these reports, we have performed some experiments to obtain a rationale for using the hemoglobin contents as a quantitative marker for tumor angiogenesis. As shown in Fig. 1, we examined the relationship between the hemoglobin contents and the number of newly formed microvessels, and confirmed that the hemoglobin content is a good marker for angiogenesis in our S-180 tumor tissue model. Increment in the number of microvessels was also confirmed histologically by using thin sections stained with anti-vWF antibody. Furthermore, no plug formation was observed on these histological sections as far as we examined. Hemoglobin has been used as a quantitative marker to evaluate angiogenesis in various solid tumors (49 – 51). Therefore, whether or not hemoglobin could be used for evaluation of tumor angiogenesis would be largely dependent on the tumor cell types, especially on the ability to produce procoagulant factors.

We did not directly demonstrate the enhanced generation of BK in the tumor stroma because the BK generated is degraded at an early time, and the estimated amounts of BK to be generated are too small to be quantitatively determined. Generation of kinins by tumor tissues was demonstrated in the ascitic fluid of experimental ascitic tumors (19). The molecular basis for the generation of BK in the tumor tissues has not been fully proved. As shown in Fig. 4, BK is suggested to be generated by plasma kallikrein. Matsumura et al. (28) demonstrated that conditioned media of various tumor cell lines contain the activities to produce active kallikrein from prekallikrein. They suggested that plasmin, generated from plasminogen by plasminogen activator derived from tumor cells, might be implicated in the activation of plasma prekallikrein into kallikrein. Therefore, it is likely that plasmin may be involved in the generation of kinins in the vicinity of tumor tissue in our tumor-bearing models.

In conclusion, we demonstrated that BK, produced by plasma kallikrein or plasma kallikrein-like enzymes, promote angiogenesis and tumor growth through B2 receptor in vivo. These results suggest that BK could be a possible target for anti-angiogenic therapy and that B2 antagonists and/or kallikrein inhibitors are promising therapeutic agents against solid tumors.

Acknowledgments

The authors thank Ms. Misako Uemura, the Experimental Animal Center, Kitasato University School of Medicine for taking care of experimental animals. Part of this work was supported by the Academic Frontier Project from the Japanese Ministry of Education, Culture, Sports, Science and Technology, grants from Integrative Research Program, and a Grant-in-Aid for Graduate Students of the Kitasato University Graduate School of Medical Sciences.

REFERENCES

2. Folkman J: What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82, 4 – 6 (1990)
19. Matsumura Y, Kimura M, Yamamoto T and Maeda H: Involve-

27 Skidgel RA, Davis RM and Erdos EG: Purification of a human urinary carboxypeptidase (kininase) distinct from carboxypeptidases A, B, or N. Anal Biochem 140, 520 – 531 (1984)

