Itch-Associated Response Induced by Experimental Dry Skin in Mice

Takayuki Miyamoto¹², Hiroshi Nojima¹, Tomoko Shinkado¹, Takashi Nakahashi² and Yasushi Kuraishi¹,*

¹Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
²Ikeda Mohando Co., Ltd., Research Laboratory, 48 Jinden, Kamiichi, Toyama 930-0365, Japan

Received November 5, 2001 Accepted December 6, 2001

ABSTRACT—The present study was conducted to establish a new mouse model of dry skin pruritus. The rostral back was treated daily with cutaneous application of acetone/ether (1:1) mixture (AE), water following AE (AEW), 1% sodium lauryl sulfate (SLS) or tape stripping (TS). On the day after 5-day treatment, although all four treatments significantly decreased stratum corneum (SC) hydration and increased transepidermal water loss (TEWL), only AEW treatment significantly increased spontaneous scratching. An increase in the frequency of TS produced the marked increase of TEWL, without significant effects on SC hydration and spontaneous scratching. In AEW-treated mice, changes in SC hydration and TEWL were marked in the initial 2-day period, while spontaneous scratching increased gradually from 3 days after starting the treatment. The degranulation of cutaneous mast cells was increased by SLS treatment but not by other treatments. There was no apparent difference in AEW-induced spontaneous scratching between mast cell-deficient mice (WBB6F1-W/WV) and normal littermates (WBB6F1+/+). Opioid antagonists, naloxone and naltrexone, (1 mg/kg, subcutaneously) significantly suppressed spontaneous scratching in AEW-treated mice. It is suggested that spontaneous scratching of AEW-treated mice is an itch-related response and a useful model for studying the mechanisms of dry skin pruritus.

Keywords: Scratching, Xerosis, Stratum corneum, Mast cell, Opioid antagonist

Pruritus is a common symptom in various dermatosis and/or dermatitis characterized by the dry skin, such as senile xerosis, atopic dermatitis and seasonal xerosis in winter (1, 2). Severe itch due to dry skin distresses most of patients with renal failure or cholestasis. Dry skin is caused by reduction of water-holding capacity, which is regulated by cutaneous barrier function, in stratum corneum. Some reports implicated skin dryness itself and/or cutaneous barrier disruption in dry skin-associated pruritus (3, 4), in which skin dryness is characterized by reduction of stratum corneum (SC) hydration, and cutaneous barrier disruption is characterized by increase in transepidermal water loss (TEWL). However, other reports could not relate changes in SC hydration and TEWL to pruritus (5 – 7). Thus, the mechanisms of dry skin pruritus are unclear and effective medications for the pruritus have not been established.

The experimental model of cutaneous barrier disruption has been demonstrated by treatment with organic solution or surfactant, diet without essential fatty acid and physical disruption by tape stripping (TS) (8 – 11). These models may be mainly due to removal of lipid components in the SC such as ceramides, cholesterol and free fatty acids, which play an important role in cutaneous barrier function (12, 13). Additionally, treatment with organic solvent and water or exposure in the dry environment can disrupt the barrier with the loss of aqueous components, including amino acids, ω-hydroxylates, pyrrolidonecarboxylate and urea (14, 15). However, itch-associated responses and the mechanisms have not been investigated in these models. Thus, there is no animal model to use for the screening test of the medications for dry skin pruritus.

We have shown that injections of pruritogenic, but not algesiogenic, agents into the rostral back elicit hind-paw scratching of the injected site in mice (16). Itching and scratching of patients with pruritic diseases are inhibited by opioid antagonists (17, 18). Similarly, scratching behavior induced by intradermal injections of pruritogens in healthy mice and spontaneous scratching of mice with chronic dermatitis is inhibited by opioid antagonists (19 – 21). Therefore, scratching behavior may be used as an index of the itch response.

In this study, we examined whether dry skin-like lesion induced by disruption of cutaneous barrier would increase
scratching and whether such scratching would be affected by opioid antagonists.

MATERIALS AND METHODS

Animals

ICR mice (Japan SLC, Shizuoka) were used, except one series of experiments in which mast cell-deficient (WBB6F-/-W/Wv) mice and the normal littermates (WBB6F-+/-) (Japan SLC) were used; they were all male and 5-week-old at the start of experiments. The animals were housed in a room under controlled temperature (22 ± 2°C), humidity (55 ± 10%) and light (light on 07:00 – 19:00 h). Food and water were freely available. They were used at least 7 days after purchase. Procedures for animal experiments were conducted in accordance with the Guiding Principles for the Care and Use of Laboratory Animals approved by The Japanese Pharmacological Society.

Drugs

Naloxone hydrochloride and naltrexone hydrochloride were purchased from Sigma Chemicals Co. (St. Louis, MO, USA). All other chemicals of reagent grade were from Wako Pure Chemical Industries Ltd. (Osaka).

Treatment of cutaneous barrier disruption

The hair of mice was shaved over the rostral part of the back at least 3 days before the start of the experiment. To disrupt the cutaneous barrier, we applied four kinds of treatment to the back skin. Treatment 1: cotton (2 × 2 cm) soaked with a mixture of acetone and diethylether (1:1) was placed upon the shaved area for 15 s (AE group). Treatment 2: immediately after AE treatment, cotton soaked with distilled water was laid upon the same area for 60 s (SLS group). Treatment 3: cotton soaked with 1% sodium lauryl sulfate (SLS) solution was laid upon the shaved area for 15 s (SLS group). The above treatments were performed twice daily (9:00 and 17:00) under ether anesthesia. For the TS group, the SC in the shaved area were peeled with adhesive cellophane tape (Nichiban Co., Ltd., Tokyo) consecutively 4 times under ether anesthesia, except one experiment in which TS was performed 4, 6 or 8 times; such treatment was repeated once daily for 5 days.

Measurement of SC hydration and TEWL

SC hydration was measured by use of Corneometer® CM825 (Courage & Khazawa, Cologne, Germany). The amount of hydration was expressed as relative capacitance. TEWL was measured by pressing the Tewameter® TM210 (Courage & Khazawa) against the skin for 30 s. Each parameter was measured on the day after the last treatment for cutaneous barrier disruption (at least 14 h later).

Behavioral observation

Scratching of mice was observed as described previously (16, 22). Briefly, four mice were put individually into an acrylic box (26 × 18 × 30 cm) composed of four cells. They were acclimated to the experimental environment for at least 1 h, and then behaviors were videotaped with experimenters kept out of the observation room in the morning. Playback served for counting the scratching of the treated area by the hind paws; the mouse generally showed several scratchings for about 1 s and a series of these movements was counted as one bout of scratching. Several kinds of acute stimulation of the murine skin elicit scratching, which subsides by 30 – 120 min depending on the strength and kind of stimulation (16, 19, 20, 22 – 24). On the other hand, mice with chronic dermatitis show spontaneous scratching all day long (25). Thus, since the aim of the present study was to examine whether a decrease in cutaneous barrier would induce long-lasting itch in mice, we observed scratching of the mouse at least 14 h after the treatment for barrier disruption on the previous day.

Administration of drugs

Naloxone hydrochloride and naltrexone hydrochloride were dissolved in physiological saline in a concentration of 0.1 mg/ml. These agents were injected subcutaneously in a volume of 0.1 ml per body weight of 10 g (1 mg/kg) into the caudal part of the back 15 min before the start of videotaping. Physiological saline was injected as the control.

Histological experiments

The skin including the treated area of rostral back was removed after euthanasia by decapitation and exsanguination. After fixation with 10% neutralized formalin for 48 h, the skin samples were embedded in paraffin, sectioned at 2 μm, and stained with hematoxylin and eosin (HE) or toluidine blue. The staining was observed using a light microscopy (AX80; Olympus, Tokyo) with a CCD-camera (Axio Cam; Carl Zeiss, Jena, Germany). The thickness of epidermis was measured on microscopic images of HE-stained sections by using of image analyzing software (Winroof®, Mitani Co., Fukui).

Statistics

Values are represented as the mean and S.E.M. Statistical significance was determined with the paired t-test or one-way analysis of variance followed by Dunnett’s multiple comparisons; differences were considered significant at P<0.05.
RESULTS

TEWL, SC hydration and scratching behavior

We examined the effects of 5-day treatment with AE, AEW, SLS or TS on TEWL, SC hydration and scratching behavior. TEWL was significantly increased by all treatments examined (Fig. 1A). AEW treatment produced the greatest effects. The TEWL was not significantly different among TS, SLS and AE groups. On the contrary, SC hydration was significantly decreased by all treatments examined (Fig. 1B). AEW treatment produced the greatest effects. SC hydration in the AE group was lesser than those in the TS and SLS groups. AEW treatment markedly and significantly increased scratching (Fig. 1C). On the other hand, AE treatment produced slight but not significant increase in scratching, and SLS and TS treatments did not affect it (Fig. 1C).

Histological observations of the skin

To characterize the itch-associated response following cutaneous barrier disruption, we examined the histological effects of TS, SLS, AE and AEW treatments. HE staining revealed apparent epidermal hyperplasia in the TS, SLS and AE groups, as compared with the untreated control, and the degree of hyperplasia was not apparently different between these treated groups (Figs. 2A – C and 3A). Infiltration of inflammatory cells in the dermis only occurred in the SLS group (Fig. 2B). On the other hand, the AEW group had marked epidermal hyperplasia, which was obviously greater than those of TS, SLS and AE groups (Figs. 2D and 3A). The AEW group also had parakeratosis and abnormally accentuated keratinization, but without infiltration of inflammatory cells in the dermis (Fig. 2D). The total number of mast cells in the skin was not significantly altered by any treatments for cutaneous barrier disruption (Fig. 3B). The number of degranulated mast cells in the skin was significantly increased in the SLS group, but not in the TS, AE and AEW groups, as compared with the untreated control (Fig. 3B).

Relationship between cutaneous barrier disruption, SC hydration and scratching in TS- and AEW-treated mice

To clarify the relationship between cutaneous barrier disruption, SC dryness and scratching behavior, we examined the effects of various AEW and TS treatments on these parameters. When the frequency of TS was increased from 4 to 8 times per day, TEWL was increased in a frequency-dependent manner (Fig. 4A). AE treatment markedly increased TEWL, which was slightly enhanced by the addition of water treatment of the duration of 15, 30 or 60 s (Fig. 4A). The increase of TEWL after the 30-s water treatment was similar to those of 60-s water treatment and 8-times TS treatment. Although SC hydration was slightly decreased by TS treatment, the effects were not significant nor dependent on the frequency of TS (Fig. 4B). AE treatment markedly decreased SC hydration, and the decrease was promoted by the addition of water treatment; the effect was dependent on the duration of water treatment (Fig. 4B). The number of spontaneous scratchings was slightly but not significantly increased by TS treatment (Fig. 4C). Although AE treatment was without effect on spontaneous scratching, the addition of water treatment of the duration of 15, 30 or 60 s significantly increased it; there were no apparent differences between these three groups (Fig. 4C).

Time-dependent effects of AEW treatment on TEWL, SC hydration and scratching behavior

In this series of experiments, we examined the time-dependent effects of AEW treatment on TEWL, SC hydration and scratching behavior. When AEW treatment was
repeated twice daily, TEWL was rapidly increased in the initial 2 days and then plateaued at 2.4 – 2.9 fold increase (Fig. 5A). On the contrary, the SC hydration was rapidly decreased for the initial 2-day period and then was relatively constant from day 2 to day 5 (Fig. 5B). On the other hand, although scratching was not altered for 2 days, it gradually and significantly increased from day 3 to day 5 (Fig. 5C). When AEW treatment was continued until day 14, the number of scratchings did not increase more than that of day 5 (data not shown).

Scratching induced by AEW treatment in mast cell-deficient mice

When treated with AEW for 5 days, the number of scratchings was significantly increased in both mast cell-deficient mice and normal littermates (Fig. 6). The number of scratching after the AEW treatment was similar between mast cell-deficient mice and normal ones.

Effects of opioid receptor antagonists on spontaneous scratching

To confirm that the scratching of AEW-treated mice was an itch-associated behavior, we examined the effects of opioid receptor antagonists on the spontaneous scratching of mice treated with AEW for 5 days. Subcutaneous injections of naloxone and naltrexone (each 1 mg/kg) significantly suppressed the spontaneous scratching (Fig. 7).

DISCUSSION

One important finding in the present experiments is that repeated treatment to disrupt a cutaneous barrier increased scratching of the treated skin in mice. Among four kinds of treatments (TS, SLS, AE and AEW), only AEW treatment
significantly increased spontaneous scratching. We observed behaviors at least 14 h after the treatment and scratching increased gradually from 3 to 5 days after the start of treatment. The results suggest that the scratching is not due to acute stimulation by AEW treatment, but instead due to the continuous changes in the function of the skin.

Spontaneous scratching after the AEW treatment was significantly suppressed by two opioid antagonists, naloxone and naltrexone. Opioid antagonists reduce itching of patients with pruritic diseases such as cholestasis, chronic urticaria and atopic dermatitis (17, 26–28). Naloxone suppresses experimental itch induced by histamine in humans (29). With regard to animals, opioid antagonists inhibit scratching elicited by intradermal injection of pruritogens such as substance P and serotonin (20, 22) and scratching following the immediate allergic response (24). Spontaneous scratching in mice with chronic dermatitis is also suppressed by opioid antagonists (21). With these findings taken into account, the present results suggest that spontaneous scratching induced by AEW treatment is an itch-associated response. In mice, intracisternal and intrathecal injections of morphine and mu-opioid peptide receptor agonist induce scratching, but intradermal injections of opioids, including morphine and mu-opioid peptide receptor agonist, are without effects (30–32). In humans, intrathecal and epidural injections of opioid, especially morphine cause itch as a side effect, which is antagonized by opioid antagonists (for review see 33). These findings taken together suggest that opioid antagonists act on the central nervous system to inhibit the AEW-induced spontaneous scratching.

TS, SLS, AE and AEW treatments significantly increased TEWL, suggesting the disruption of the cutaneous barrier. Although AEW and 8-times TS treatments produced the greatest increase of TEWL among the treatments tested, it may be relatively mild as compared with acute disruption of the cutaneous barrier, in which TEWL increases more than tenfold generally 1 h after treatment (9, 34–36). On the other hand, in our preliminary experiment, TEWL was increased 1.5-fold (from 9.18 ± 1.13 to
In addition, TEWL was increased around threefold after repeated AEW treatment. The results that AEW treatment produced a marked increase in TEWL and spontaneous scratching raise the possibility that the hypofunction of cutaneous barrier was associated with an increase in spontaneous scratching. TEWL rapidly increased in the first 2 days and then did not increase any more, while spontaneous scratching gradually increased from day 3. Therefore, the disruption of cutaneous barrier may be an indirect cause of scratching; in other words, the lasting barrier disruption may produce pruritogen(s) or increase the excitability of itch-signaling primary afferents. Interestingly, although the more severe conditions of TS treatment and AEW treatment produced similar increase in TEWL, but TS treatment did not significantly increase the spontaneous scratching. Thus, the disruption of the cutaneous barrier may not be a sufficient condition to cause an increase in spontaneous scratching.

Although TS, SLS, AE and AEW treatments decreased SC hydration, AEW treatment produced the greatest effect. Therefore, the results that only AEW treatment increased spontaneous scratching raise the possibility that reduced SC hydration is associated with an increase in spontaneous scratching. Although the more severe conditions of TS treatment increased TEWL, they did not exert marked influence on SC hydration (relative capacitance of the skin) and spontaneous scratching. The results suggest that dry skin is a more important cause of scratching than cutaneous barrier disruption. Thus, AEW may be the suitable method to develop xerosis-associated scratching in mice.

Repeated treatment with acetone or TS has been shown to cause epidermal hyperplasia (35). Similarly, in the present study, all four treatments examined resulted in substantial epidermal hyperplasia. However, the AEW treatment exerted the most marked effect. In addition, only the AEW treatment induced apparent parakeratosis.
contrast, only the SLS treatment induced apparent infiltration of inflammatory cells and edema in dermis without increase of spontaneous scratching. These results suggest that, AEW treatment produced the greatest proliferative effect on epidermis without a typical dermal inflammation.

In clinical cases, H1 histamine receptor antagonists, major antipruritic agents, are often ineffective against dry skin pruritus. On the other hand, the degranulation of mast cells is observed 48 h after acetone treatment during exposure to a dry environment (11). Histamine, a mast cell mediator, was claimed to be involved in development of the epidermal hyperplasia through activation of H1 and H2 histamine receptors (37). These findings raise the possibility that increase in the number and/or degranulation of mast cells were involved in the spontaneous scratching after the AEW treatment. However, in the present experiment, only SLS treatment increased the degranulation of mast cells 14 – 18 h after the last treatment, and AEW treatment (as well as AE and TS treatments) did not affect the number and degranulation of mast cells in the treated skin. In addition, the AEW treatment increased spontaneous scratching in mast cell-deficient mice as well as the control ones. Therefore, mast cells may not be involved in the spontaneous scratching after the AEW treatment.

The mechanisms by which AEW treatment induced spontaneous scratching is unclear. We have shown that intradermal injections of several endogenous substances such as histamine, substance P, serotonin and leukotriene B4 elicit itch-associated responses in mice (19, 20, 22, 23). Since mast cells may not be involved in AEW-induced spontaneous scratching, it is suggested that the mast cell mediator histamine is not involved in this scratching. We are going to examine the involvement of the other pruritogenic mediators in this scratching. In preliminary experiments, we found that there were many nerve fibers in the thickened epidermis, although in the superficial layers of normal skin, nerve fibers were mainly distributed in the dermal region close to the epidermis (T. Miyamoto et al., unpublished observation). The increased distribution of nerve fibers in the thickened epidermis is also apparent in patients with senile pruritus (11) and H2 histamine receptors (37). These findings raise the possibility that increase in the number and/or degranulation of mast cells were involved in the spontaneous scratching after the AEW treatment. However, in the present experiment, only SLS treatment increased the degranulation of mast cells 14 – 18 h after the last treatment, and AEW treatment (as well as AE and TS treatments) did not affect the number and degranulation of mast cells in the treated skin. In addition, the AEW treatment increased spontaneous scratching in mast cell-deficient mice as well as the control ones. Therefore, mast cells may not be involved in the spontaneous scratching after the AEW treatment.

The mechanisms by which AEW treatment induced spontaneous scratching is unclear. We have shown that intradermal injections of several endogenous substances such as histamine, substance P, serotonin and leukotriene B4 elicit itch-associated responses in mice (19, 20, 22, 23). Since mast cells may not be involved in AEW-induced spontaneous scratching, it is suggested that the mast cell mediator histamine is not involved in this scratching. We are going to examine the involvement of the other pruritogenic mediators in this scratching. In preliminary experiments, we found that there were many nerve fibers in the thickened epidermis, although in the superficial layers of normal skin, nerve fibers were mainly distributed in the dermal region close to the epidermis (T. Miyamoto et al., unpublished observation). The increased distribution of nerve fibers in the thickened epidermis is also apparent in patients with pruritic disease such as atopic dermatitis and chronic renal failure (38, 39). Thus, although further studies are needed, it is possible that increase in nerve fibers in the epidermis is at least partly involved in the AEW-induced spontaneous scratching.

In conclusion, repeated AEW treatment induced spontaneous scratching, which may be itch-associated response. Skin dryness, although an indirect cause, may be more important for the induction of pruritus than cutaneous barrier disruption. This murine model may be useful for the study of the mechanisms of dry skin-induced itching and screening of agents effective against xerosis-associated pruritus.


