平衡機能検査法について

宮川 清

両方の脚で、あるいは片脚だけで立てるということは、日常的親近性に従わせてしまっていると思われた。われわれの注意が注がれる程度の特殊な現象ではない。しかし、両方の条件を附して立つということを課したり、又は立ち上り初めの頭の幼児の状態を観察してみると、この現象はそう簡単なものではないことに気付く苦である。実際に生理学的みても、この立つことが可能なためには、まず前庭迷路、網膜、筋肉、及びそれの附属物に係れている深部知覚器等から、求心性衝動が中枢神経へ送られる。ついて、中枢神経系内でそれぞれの水準で統合されてこれらの衝動が遠心性の衝動となる。

ついでこの際に動員される筋へこれらの衝動が送られるということである。勿論ある部分は反射的、一部は意識的に行われるであろう。この際関係している諸筋の間に適当な協調が行われていて、体重心からの垂線が、片脚全接地立ちの場合であるならば、用いている足の踏面に落ちるようになっていることが必要である。なおこれ、この際関係している諸筋の筋力が各々の役割を果たすように充分な程度大きくなればならない。しかし、閉眼条件で行った成績の方が、開眼条件で行った成績に劣ることをみてても、迷路前庭に疾患を有する者がこの成績が変わるかどうか、その他中枢神経系の疾患の際にこれらの成績が悪いということを考えてよいと思われる。

筋力のために直立姿勢が取れないということは、まず特殊な疾患の場合以外に考えられないことである。従ってこの立つということを適当に利用するならば、中枢神経の上述の意味での統合性の一つの指標となり得ることが考えられる。この中枢神経系の統合的機能が、新しい負荷条件に対応して従来持続性を持続しうるならば、ある事は必要な時間疲労せずに持続できるという
このことは、身体適性状態という言葉が意味する身体の状態の重要な部分を占めていることは否めない。従って、単脚直立能力をその意味での一つの指標に採用するということは充分納得のゆくことだと思われる。

直立姿勢を様々な条件のもとに検査法として使用することは、医学関係では日常行われていることである。例えば、患者に爪を踏んで、両足をできるだけ伸ばして、直立姿勢を保つ。ついで両眼を閉じさせる時、両足の身体外側の勧めを示して立っていることの不可能な場合を Romberg の微候としている。外鼻科方面では内耳機能の検査法としてニオメーターを用いている。これは傾斜可能の台上に直立姿勢をとらせ、前方左右にその傾斜を極端に高度にしていった場合、耐えられる最小限界角から平衡能力を示すようという試みである。

これら医学的関係以外でも日常小児の発育標準として、立ち上ることのできる時期の遅延は一般の観察から注意されている。Oseretky) 1), 2), 3) は両脚立ちより更に負荷条件を高めた直立姿勢、閉眼での片脚金剛面立ち、閉眼でのそれを小児の身体機能の発育の一つの指標に用いている。また Oseretky とは多少異った一定の条件のもとにこの単脚直立姿勢を課し日本人の平衡機能の発育に関する研究が行われている。

このような方法で、直立姿勢を一定の条件のもとに課し、一定の規準のもとに、その姿勢の破綻を判定し、課した時点より破綻した時点の時間を以って、身体適性状態の指標に用いるというわけである。この直立姿勢をこの意味に用いるに当って、課する直立姿勢の種類の選択、並びに負荷条件等を吟味してみなければならない。

健康目的よりも異なるのみならず、単脚に平衡機能の発育が途絶状態に達した後の個体を対象としているという点もあり、発育の指標に用いた場合とは異なった観点から検討が行われなければならない。この点につき日本体育学会研究部で、身体適性状態の判定の方法に採用、設定させられた方式をめぐって、多少実証的な検討を行ったので報告する。

被検者

すでに前回の調査において単脚直立能力の発育、男女差、地域差が多数例において考察されている。それによれば、この種の能力は中学生ですでに終末状態に達していることが判明しているので、なお今後、研究をこの点からさらに進めるとも考えている点もあって、対象として中学生を選んだ。

今回の調査は日本体育学会研究部の身体適性状態の発育、発育、発育の発育、発育法に採用されている方式の生理学的見地からの検証が主な目的である。従って限られた対象であっても、諸種の方法ともとれた平衡機能検査方法を課し、その間にみられる成績の差異から、上述の適性検査法としての方式の生理学上の意義を発見したいと考えた。

以上の通り前から、東京都目黒第三中学校の全生徒から、男女別に任意抽出法により総数 120 名の被検者が選んだ。

検査方法

検査方法を説明するに当って、前回平衡機能の発育を研究する際に設定された法、並びに日本体育学会研究部で身体適性検査法の中に採用されている方式を一通り説明しておく必要がある。前者を仮りに福田の方法、後者を日体研方法と略称する。

平衡機能の発育をみるために福田の設定した方法は次の如き要領のもとに行われている。次にその要領を今回の検査に使用した部分の説明する。

1) 左又は右片脚（利き脚を用いさせる、利き脚はこの場合、チケットをするとき使用する側とした）で平面上に立て、体の両側を保っていることのできる時間をストップ・ウォッチで測った。
2) このとき、反対側の脚と使う位置の脚を互
にさわらないようにする。反対側の脚は短く膝を曲げ、腰を真直く伸ばさないようにした。両手は垂直の自然のままにした。

3）床にはだてで立てた。
4）開眼の場合には目標を定めて注視させた。
5）片脚をあげてから、体の質量を保つに及ばなかったと認めた瞬間宛をストップウォッチで計るのであるが、その最終の時点の日付は
i) 遊ばせるある方の脚が床面にいたとき、又
はそれ以前でも
ii) 姿勢の復元が不可能と思われる程度された時と
する。このときには遊ばせてある方の脚が床に
つかなくても、まだ空中に躍っている時でも、
ストップウォッチを押す。

福田の方法では、追跡時間は10秒でそれ以後は追跡していないが、今回は前後で比較対象の年令が大きいので、また一定のころままでして追跡時間を15秒に延長した。

次に日本体育学会研究部に属して居る平衡機能検査方法（5）を述べる。

片脚で立たせる（どちらの足でもよい）。他方の足を伸ばして前に出し、踵を少なくとも15cm 床から
離す。両手を腰にとらせ、眼は閉いたままよい。
10秒迄はそのままの姿勢で10秒間あり、10秒後直ち
に「踵をあげ」と合図して、できるだけ踵を高く上
げさせ、その後は判定規準にふれた時点の秒数を
記録する。その判定規準とは、
(1) 体重を変えて居る足が移動したとき
(2) あがった足が床又は支持足に触れれた時
(3) 支持足の踵を踏じたとき
(4) 手を腰から離したとき
(途中で踵を下げたかどうかを判定し難しいので、判定の規準にしない。絶対ないようによく理解させてから行う。)

上述の二方法の関係を調べる目的で、それら
二方法の間に立会する方法を新たに設定し、
結局次の11方式を1人に対して2回づく追跡的
に行わせ、その平均値をとってその個人の、そ
の検査における点数とした。その11方式とは次の
通りである。

第1検査：上げる脚の位置、形は福田の方式で、
開眼条件の片脚全騰面立ち。判定規準は福田の方
式。

第Ⅱ検査：第1検査を開眼条件で行わせる。

第Ⅲ検査：上げる方の脚の位置、形、手の位置は
福田の方式で、片脚全騰面立ちではなく、中足指
関節 articuli metatarsophalangii で曲げたの爪先
立ちを行わせた。判定規準は福田方式。

第Ⅳ検査：第Ⅲ検査を閉眼条件で行わせる。

第Ⅴ検査：上げる方の脚の位置及びに形は
日・休・研・方法の手、足に上げる方
の脚の位置及びに形で、閉眼条件での片脚全騰面
立ちのみを行わせた。爪先立ちは移行させな
い。判定規準は日・休・研・方式。

第Ⅵ検査：第Ⅴ検査を閉眼条件で行わせた。

第Ⅶ検査：手及び上げる方の脚の位置及びに形は
日・体・研・方式で最初から爪先立ちを閉眼条
件で行わせる。判定規準は日・休・研・方式。

第Ⅲ検査：第Ⅲ検査を閉眼条件で行わせる。

以上の検査を各個人に対し各検査を2回づ
つ、第1検査から順に第2検査まで連続的に行
った。各検査の2回の施行時間間隔をも、各検
査間の間隔も一律に10秒程度で行った。

検査成績

検査の成績を観察せるに当って、任意に次
のような方法を採用して各検査間の比較を行うのに
便を計った。すなわち第1検査より第8検査ま
でに対しては追跡時間が15秒であったので、15
秒未満に対しては判定規準にあわった場合まで
の秒数をもってその点数とし、15秒以上のもの
に対しては一律に15点を与えた。かくして各
個人に対して同一検査を5回行ったわけである
表1 学年別、性別各検査成績表

<table>
<thead>
<tr>
<th>年</th>
<th>居 1</th>
<th>居 2</th>
<th>居 3</th>
<th>居 4</th>
<th>居 5</th>
<th>居 6</th>
<th>居 7</th>
<th>居 8</th>
<th>居 9</th>
<th>居 10</th>
<th>居 11</th>
<th>居 12</th>
<th>居 13</th>
<th>居 14</th>
<th>居 15</th>
<th>居 16</th>
<th>居 17</th>
<th>居 18</th>
<th>居 19</th>
<th>居 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>男</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td>12.6</td>
<td>12.4</td>
<td>4.3</td>
<td>15.0</td>
<td>13.4</td>
<td>10.2</td>
<td>3.2</td>
<td>51.1</td>
<td>13.3</td>
<td>33.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td>11.4</td>
<td>12.4</td>
<td>4.2</td>
<td>15.0</td>
<td>13.0</td>
<td>10.8</td>
<td>3.8</td>
<td>31.1</td>
<td>12.8</td>
<td>30.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td>11.8</td>
<td>11.4</td>
<td>4.2</td>
<td>15.0</td>
<td>12.9</td>
<td>8.9</td>
<td>3.2</td>
<td>52.6</td>
<td>13.7</td>
<td>25.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>女</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td>13.2</td>
<td>8.9</td>
<td>3.8</td>
<td>15.0</td>
<td>12.5</td>
<td>10.7</td>
<td>5.4</td>
<td>51.0</td>
<td>13.3</td>
<td>31.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td>13.6</td>
<td>10.5</td>
<td>3.5</td>
<td>15.0</td>
<td>13.6</td>
<td>9.3</td>
<td>3.5</td>
<td>25.1</td>
<td>13.9</td>
<td>25.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td>13.4</td>
<td>12.1</td>
<td>4.2</td>
<td>15.0</td>
<td>13.4</td>
<td>11.8</td>
<td>5.5</td>
<td>36.8</td>
<td>13.8</td>
<td>36.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

検査数：本学年 男子20、女子20

が、その2回の点数の平均値を以てその個人の
その検査に対する点数とした。この個人の点数
を性別、学年別にして第1表に示す。

この第1表のうち第9、第10、第11検査の成
績は第Ⅼ検査の方式と異なって時間的には無制
限に検査を行ったのであるが、それらは判定規
準をおかす枝の枝を記録し、2回の記録の平
均値をもって個人の枝を数とし、これを性別、
学年別にして現在したものである。

まずこの表において各検査成績において学年
間でみられる差異に注目すると、第1、第Ⅴ検
査成績においては、男女とも各学年の成績は15
点であり、学年別による差異はみられな。男
子の成績では第Ⅴ検査成績では1学年が他に比
して一輪前で、第Ⅴ検査の場合では3年生の
値が他に比して1割弱小であり、第Ⅴ検査の成
績を除いて、第Ⅴ学年の成績が悪いようにみえ
る。しかし先回の平衡機能発育の研究の際の大
数例においては別にこのような傾向はみられた
かったことと、又これを検定するにしても、こ
の点数分布形は第1図に示すように正規分布か
らはかなり稀遠まい。しかも分散の大きな分布で
ある。これを検定するためには大標示の理論に
もとすって行わねばならない。それには少々
標本数が不足している。たとえ行ってても標
準偏差が大で、この点の平均値の差は問題にな
らないと思われる。そのような意味合からと
れらの差を重要視するわけには行かないと一応

第1図 第1-第Ⅴ検査成績別変数分布図の
番号1、2等は第1、第Ⅴ検査方式という意
味である。以下同様方式については本文参照
のこと。各検査鉄数は60。
検査までの成績を各検査毎に3学年の平均値をとった。
この平均値を大なる順に排列すると第2表の如き系列を得る。この系列から次のことをみることができる。最も易しい検査は第Ⅰ並びに第Ⅳ検査であり、第1図でわかるように男子で第Ⅴ検査の1名を除いてすべてが15秒以上に達している。これらは閉眼条件での片脚静止立ちである。これに反し最も困難な検査は第Ⅳ並びに第Ⅷ検査である。これらは閉眼条件での片脚歩行立ちで個々の2回の検査を別々に取り扱っていると15秒に達しているものは1人もおらず、第Ⅳ検査では両足合わせて97.5％が10秒未満であり、同じく第Ⅷ検査では両足合わせて99.2％が10秒未満である。次に最も易しい組と最も困難な組とに挟まれた第3番目の組がある。これらは第Ⅵ、第Ⅲ、第Ⅱ、第Ⅰ、第Ⅴ、第Ⅶの諸検査であって、これらの検査の難易の順位は男女において差異がみられる。両方ともに共通な点は、第Ⅵ検査が第Ⅲ検査の前位にあるということである。上記している足の位置、形、手の位置が同じでも閉眼条件での片脚全頭立ちより、開眼条件での片脚歩行立ちの方が困難であるという形になっている。この組に属する4つの検査を閉眼条件での片脚全頭立ち、開眼条件での足先立ちという点のみを注目して難易を比較するため、任意に易しい順に1点から4点まで与えると前者は7点で後者は13点となり、後者が前者に比して困難であることがいえる。このことは平均値の和からもいえる。一般にって閉眼条件での片脚歩行立ちの方が困難であると結論されるわけである。

次に第Ⅷ検査遅を、0秒以上5秒未満、5秒以上10秒未満、10秒以上15秒未満の4つの組に分ってその百分率を検査別、男女別に示すと第3表のようなもの。なお第Ⅷ検査遅の成績で、各個人の2回の成績を独立したものとして15秒以上に達するものの百分率を第4表に示す。これはどうした検査法がこれらの年令層に対して適当か否かの判定に参考になると思う。

各種検査成績を性別にして、3学年を含む成績別群のヒストグラムを描くと第1図のようになる。これによると、第Ⅱ、第Ⅲ、第Ⅵの強いていえば第Ⅵの成績分布は類似の模様を描いていることができるよう。この成績分布の形を示すと図1のようなものではないのに、10点前後に一つの極大値が存在していることである。

ついで著者な事実は、男子、女子共に第Ⅳ、並びに第Ⅷ検査の成績別群分布模様が似ている。

次いで第Ⅸ、第Ⅹ、第Ⅺ検査成績を成績別群として第1図に示す。この鎖で興味深いのは第Ⅸ検査の場合で、この検査の10秒遅は第Ⅷ検査の10秒遅と検査の内容が全く同一であるが、第1図で第Ⅵ検査の10秒遅以前の成績と同様な結果となっていることがわかる。

ついで第Ⅵ検査の10秒遅以降は検査の内容において第Ⅷ検査と全く同一である。しかしこのヒストグラムの模様からみると第Ⅷ検査のそれは時間経過に従って急激に上昇し、検査に下降している左右の対称性に欠ける処があるが、
第3表 各検査点別百分率

<table>
<thead>
<tr>
<th>検査種類</th>
<th>性別</th>
<th>0点以上5点未満の割合</th>
<th>5点以上10点未満の割合</th>
<th>10点以上15点未満の割合</th>
<th>15点以上の割合</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>male</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>I</td>
<td>female</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>II</td>
<td>male</td>
<td>5.0%</td>
<td>31.7%</td>
<td>21.7%</td>
<td>41.7%</td>
</tr>
<tr>
<td>II</td>
<td>female</td>
<td>0.0%</td>
<td>15.0%</td>
<td>26.7%</td>
<td>58.3%</td>
</tr>
<tr>
<td>III</td>
<td>male</td>
<td>5.0%</td>
<td>20.0%</td>
<td>38.3%</td>
<td>36.7%</td>
</tr>
<tr>
<td>III</td>
<td>female</td>
<td>10.0%</td>
<td>33.3%</td>
<td>30.0%</td>
<td>26.7%</td>
</tr>
<tr>
<td>IV</td>
<td>male</td>
<td>76.7%</td>
<td>21.7%</td>
<td>1.7%</td>
<td>0.0%</td>
</tr>
<tr>
<td>IV</td>
<td>female</td>
<td>86.7%</td>
<td>10.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>V</td>
<td>male</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.7%</td>
<td>98.3%</td>
</tr>
<tr>
<td>V</td>
<td>female</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>VI</td>
<td>male</td>
<td>1.7%</td>
<td>13.3%</td>
<td>31.7%</td>
<td>53.4%</td>
</tr>
<tr>
<td>VI</td>
<td>female</td>
<td>3.3%</td>
<td>13.3%</td>
<td>28.3%</td>
<td>55.0%</td>
</tr>
<tr>
<td>VII</td>
<td>male</td>
<td>15.0%</td>
<td>40.0%</td>
<td>28.3%</td>
<td>16.7%</td>
</tr>
<tr>
<td>VII</td>
<td>female</td>
<td>11.7%</td>
<td>31.7%</td>
<td>28.3%</td>
<td>28.3%</td>
</tr>
<tr>
<td>VIII</td>
<td>male</td>
<td>93.3%</td>
<td>5.0%</td>
<td>1.7%</td>
<td>0.0%</td>
</tr>
<tr>
<td>VIII</td>
<td>female</td>
<td>60.0%</td>
<td>6.7%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

第4表 全検査に於て15秒以上のものの百分率

(male) VIII = 0%, IV = 0%, VII = 40.8%, II = 61.7%, III = 50.8%, VI = 70.8%

(female) VIII = 0%, IV = 0%, III = 44.2%, VII = 27.5%, VI = 67.9%, II = 70.8%

第X検査の成績においては左右の対称性が明確になっている。ついて第Ⅸ、第XI検査の成績別の頻度分布を描いてみると、第3図に示すようになる。この検査の10秒以上は内容において第Ⅸ検査と同じであるが第Ⅹ検査の10秒以上を第Ⅸ検査の採点法で各個人の成績を取ってみると第5表のように第Ⅸ検査の10秒以上と第Ⅹ検査とは成績において大差のないことが判る。これを頻度分布でみると時間の経過方向からいって上昇点は急な、下降点は緩い傾斜をなした山をしている。これらの分布から母集団の分布が正規分布とは仮定しないので、大樋本の理論すなわち近似的な母集団の標準偏差を単位として、平均値の差を検討するという方法をとると、第Ⅸ検査成績の平均値と第Ⅸ検査のそれとの間には男女別にして大した有意義の差は認められない。（標準偏差の13%程度）男女差も標準偏差程度である。従って検査が継続的に行われたということと、経過時間を勘で告げられるか否かということが検査成績に顕著な差を及ぼしているとはいいえないことになっているわけである。

上述したようにこれら各検査は、標準として選んだ同1人に各検査2回づつ行ったわけであるが、これら11検査の中2検査ずつ取り出し相関図を作ったが、その中で第Ⅸ検査と第Ⅹ検査との相関、第Ⅸ検査と第Ⅰ検査との相関を相対的に第5図（A, B, C, D）に示す。なお各検査は一人に2回ずつ行ったのであるから、この2回の成績間の相関がどうなっているかを示するために第5図Eに第Ⅸ検査の男子の二成績間の相関を第6図に第Ⅸ検査の男子
第2図　第X、XI、検査成績別度数分布図

第3図　第X、XI検査合併度数別度数分布図

の前後2成績間の相関を示してある。

第5表　第Ⅶ、第Ⅸ検査成績比較

<table>
<thead>
<tr>
<th></th>
<th>男子</th>
<th>女子</th>
</tr>
</thead>
<tbody>
<tr>
<td>検査Ⅶの成績</td>
<td>検査Ⅸを検査Ⅶの様にまとめた成績</td>
<td>検査Ⅸの成績</td>
</tr>
<tr>
<td>I</td>
<td>10.2</td>
<td>11.0</td>
</tr>
<tr>
<td>II</td>
<td>10.3</td>
<td>10.9</td>
</tr>
<tr>
<td>III</td>
<td>8.9</td>
<td>11.0</td>
</tr>
<tr>
<td>平均</td>
<td>9.8</td>
<td>11.0</td>
</tr>
</tbody>
</table>

を分離することができない。すなわち負荷姿勢の程度が低すぎてこの年代に対して不適当だといえる。最も苛酷な条件は、閉眼条件の下の片脚先き立ちということである。この中間で閉眼条件での片脚先き立ちと閉眼条件での片脚全眼面立ちがあるが、前者の方が後者よりも困難だといえる。

網膜からの受容が姿勢調整にどのような経路を介して関与しているか、人間の場合は視束の線維の殆どは視運動神経で視放射とされているが、外側膝状体を経て、視放射となっているのがごく一部の線維が中脳に走り、瞳孔の光反射に関与していると考えられている。そこで閉眼条件の下の片脚先き立ちが片脚全踏面立ち易いというのは、以上の視放射を通って大脳皮質に行くものか、あるいは中脳に走る様々な線維の中で四頭筋並びに膝関節の緊張に影響を与えるものか、人間でも残っているかは今後の問題である。この視放射というのが、片脚立ちの姿勢調整に大きな役割を演じていることだけは実証することはできない。

次に片脚全踏面立ちと片脚先き立ちの生理
第5図 検査成績間の相関
A、B、C、Dに於ては検査値、E及ぶ検査値、IVの成績間の相関図。Eは検査値の前後2回の成績間の相関、横軸は前の成績、縦軸は後の成績。

このような差異について考察を行ってみる。先づ最初に問題になるのは、片脚立ちができるというためには、その時の体重の重心から下した垂線が全踏面立ちのときのは、踏面に第4図の点線で包んだ部分全体の中に落ちているわけである。

この部分の範囲ならばどこに落ちていても顕

倒しないでいるわけである。ところが片脚

爪先を立つの場合ではどうかというと、中足指
関節で崩れられている際に、体重の重心からの垂
線が落ちる許容範囲内が全踏面立ちの場合より

制限されるわけである。第4図では爪先の部

分に左上から右下に斜め点線が入れてあるが、

それより前の部分がその許容範囲である。この

二つの面積の関係がどうなっているかを成人に

ついて測定し第6図に示す。これによると全踏

面積の約40％弱が、爪先立ち可能の場合の重心
第4図　全額面立ちと爪先立ちに用いられる様面について

からの値線下の許容時間、成績においては、値線によっていえば6割程度爪先立ちが困難になっているといえよう。以上の意味での許容範囲の差異で、爪先立ちによる体重心の上昇、また足指関節の機能上の制約、又は別の姿勢が日常的でない等の理由もあるべき諸原因と相まって、第Ⅰと第Ⅲ検査、第Ⅱと第Ⅳ検査、第Ⅴと第Ⅶ検査、第Ⅵと第Ⅲ検査の成績の相違の原因をなしているものと思われる。

第Ⅱ、第Ⅴ、第Ⅶ検査成績判定度数分布曲線において10秒前後で極大値が存在するかどうかということ、存在するとながらその意義については、われわれの資料からのみでは明確な結論を下すことができない。そのためには同一条件で15秒以上追跡してみ、又はこの年令群前後の成績を参考にする必要がある。あるいは10秒前後に生理的な意味でクリティカルな時期が存在しているかも知れない。

次に第Ⅵ検査成績について考察を行ってみる。この検査方法は第Ⅶ検査と第Ⅴ検査とを10秒ずらして進める様式に組合わせたものである。実際に得た成績においても同様に組合わせているように見える。すなわち第Ⅵ検査成績の10秒前後と第Ⅴ検査のそれとはほぼ似ている。しかし10秒以後の曲線は形態的にみて多少の相違がみられる。それは第Ⅵ検査の場合は上昇途の傾斜が急激で、下降途の傾斜が緩徐であるが、第Ⅴ検査の10秒以上の場合はそれがほど対称的になっている。これは第Ⅵ検査の場合は非対称性の原因となった劣等群が10秒以前の検査中に脱落したとも考えられる。実際個々にみて第Ⅴ検査で10秒未満のもののはほとんどは、第Ⅵ検査で10秒以前では、もし第Ⅵ検査で前半の部分に位置している。勿論それ以外にも対称化に対する原因があることも考慮されなければならない。こうした平均機能検査は後述するように、多くの訓練効果があるように、従時に同一の検査を繰返した場合、後の成績が良いものの一方、悪いものより多い事実が存在するので、前段階での負荷条件を改、ついて負荷の度を増加して行くことは、最初から高度の負荷を課すのは相違があることを認めなければならないかも知れない。

次いで第Ⅴ検査成績の10秒以後の成績が比較的整った分布図をなすことは今後多数例において確定される必要がある。これが、単なる偶発的誤差曲線の意味のものか、生物の機能の分布が示されずして純粋化されて出たものかについてはそれから論じて適当と思う。ことに第Ⅴ検査においては、第Ⅵ検査成績が10秒しかなかった劣等群の分離を、前に第Ⅵ検査と同じ内容のものを10秒間挿入することにより成功している点は興味ある事実である。この検査方法は著者が任意に採用していたところがこれら11検査方法の条件条件の部類でも最も優れたものと考えられる。また後述するように前後、第Ⅰ検査でみている内容とこれでみている機能内容は多少相違を異にしていると考えられる点もあるので、この方法の今後の研究が望ましい。

次に日・休・研方式の成績について述べてみる。検査成績の項で述べたように、第Ⅰ、第Ⅱ、第Ⅵ、第Ⅶの検査成績の間に差が見られないので、これらの成績を合せて（男女合せて）第Ⅰ検査に示す。この結果を一応単に階級別化したいと思い、統計検査を成績の上から上中下の三群に等分すると、この年令群では20秒、32.6秒の
ところに境ができる。次に考慮されるべき点は第IX, 第X検査は時間的に無制限に視察されている事実についてである。従ってこの検査の結果でみているものは、第IV検査でみているものと多少異った要素の入っている点である。10秒迄ではこの年代層ではすべて合格しているが10秒を越して爪先立ちという新しい累加された負荷が加わるわけである。この新しい状態に中枢神経系が適応できるか否かの点で、ある被検者はこの時期に脱落するであろう。ついてこの時期を合格したもののが今度破綻を来たす要因は、前の場合とは異った要因、強いて想像するならばこうした姿勢を維持するために調整が必要であるが、その辺の機能面にあらわれた疲労というべきではないであろう。この疲労を現在のところでは解剖学的部位に投影して論ずるわけにはいかない。恐らく直立姿勢に関与している肉体部分で、種々の場所の疲労現象はみられる。それぞれの最も弱い部分が限界因子となっているかも知れない。同じ検査を同一人に2回課しているわけであるが第IX検査について前後検査成績（別）の相関が第6図に示すが、これをみると、後の方の成績が優れていることから、疲労と考えても極めて早く回復する疲労と考えなければならないことになる。

第X, 第IX検査に疲労現象が入って来はしまいかという懸念はあるとしても、確かな証拠において論じているわけではない。しかしこれらのが問題が解明されていても身体適性状態という言葉の内容が要求されている肉体的事実として、無し疲労であっても、長い期間疲労していない訓練が維持されるというの一つの能力は高く評価されなければならない。その意味でこの検査を用いることに何等の異論はない。しかし新しい負荷に適合できるか否かという能力は、又別種の能力として取り扱われるべきであろうと思う。この点の分離を事実で裏付けることは困難であっても当然考慮するべき事実である。

次に検査を早く行うという観点から32.6秒以上追跡しなければどうなるかという意味合いから、もしその点で切っても、無制限に観察した成績とどのように点で異なるかをみるために第6図の相関表に32.6秒のところに基点が引いてある。これでみてわかるとは、この点で切って影響をうける個人はこれらの点線に対して外の部分で、しかも斜上方の部分は2回とも32.6秒以上として影響を受けないわけである。その他の部分は2回の値を平均することによって求められる。その結果は、無制限にみられた成績とは変わってくる。いまこの点線をいずれに移動してみてもかから要求を満足する点はないので、観測時間を制限しても無制限に観測した結果と同じ成績を得ることは現在のところ不可能である。又上述の意味での疲労現象を時間制限することにより取り除けるとしても、その時点的設定はなお今後の問題である。

従って負荷条件の多い第IX検査の成績はむしろ、新しい負荷状態に適応できるか否かの検査法としては優れた点を持っているのであるまいかと思案される。こうした意味から第X検査は今後検討するべきである。

要約

（一）日本体育学会研究部で身体適性状態判定の一項として、平衡能力検査を設定されたが、その方法をとし、他に9種の単脚直立検査方式を同一被検者に行わせその間にみられる成績を検討した。

（二）閉眼条件での片脚全蹴返し立ちは最も易しく、対象が小学生の場合には15秒前に姿勢を破綻を来すものは皆どいている。次に困難なのは閉眼条件片脚全蹴返し立ち、次いで閉眼条件片脚爪先立ち。最も困難なのは閉眼条件での片脚爪先立ちである。

（三）日休研方式を更に閉眼条件で行わせる方式は今後検討されてよいと思う。

（本研究は著者が東京大学医学部生理学教室におい
息こらえに関する研究（1）
一息こらえ時間と肺胞内ガスー

東京大学 広田公一・石河利寛

息をこらえる能力は従来多くの方面から興味を持たれている。すなわち息をこらえた際の身体内部における色々な変化という点では生理学者に、呼吸循環器病の臨床検査法としては臨床医家に、また体力の測定という見地からは体育指導者や航空関係者の注目するところとなってい

したがって息こらえに関する研究は19世紀末以来多数行われているが（7）、息こらえの基礎的方面においても、応用的方面においてもなお解釈の点が多く、またわが国のこの方面における研究が乏しい。それが日本体育学会身体適性検査ではこの問題を取扱う上に色々の面から検討することにしたので、その研究結果を以下項を追って述べて行いたいと思う。

息こらえの方法を従来行われているものから大別すると、

① 息こらえ時の呼吸面相による分類
 ② 呼気位
 ③ 運動後の息こらえ
 ④ 静止時の息こらえ
 ⑤ 呼気位
 ⑥ 運動負荷の有無
 ⑦ 運動負荷の有無

日本体育学会研究部で現急性のテストとして採用したのは、前記の分類によると運動（1分間の通気換算）後の息こらえ吸気位で努発せずに行うテストである。著者等はまず「運動適性検査要領」に従って息こらえテストを行い、この際の息こらえ時間を記録し、運動負荷を測定し、肺胞内ガスの変化を追求した。

1. 息こらえ時間

さらに述べたように息こらえ時間の測定は静止時と運動後との二つの様式があるので、この両者の測定を同一被験者について行い、比