トレッドミル法による青少年の運動
処方に関する研究

東京大学 塚 隆 道 夫・江橋 慎 四 郎
加賀谷 隆彦

I. 研究の目的

近時、青少年の発育は、身長その他の形態的発育の著しい反面、諸業業に対する体力、特に持久性の向上はそれほど著しくないということがいわれている。この傾向は、現代社会生活の高度の機械化、合理化に伴う影響であるが、人間生物学的にみると、人類の退化現象ともいえるものである。

このような事態にあっても、体力の必要性が指摘されるのであるが、また、青少年に健全で、適正な発育発達をもたらすための適正な運動の質と量ということについては、今日では必ずしも明確にされていない。たとえば、青少年の身体適正問題について国をあげて関心を示している米国においてさえ、体力の向上のための方法としては「一日一回最低15分程度の活発な活動を実施すべきである」（註6）と指摘されているにすぎない。

そこで、本研究では、一定量の運動を継続的に負荷できるように考察されたトレッドミル（写真1参照）を用い、

1) 負荷運動としての疾走の速さならびに持続時間を正確に規定して与え、

2) 運動中の身体の諸機能の推移を面的な観察すること（心電図、呼吸、体温、ガス、筋電図など）により,

3) 青少年の体力のもっとも基本的な能力の一つと考えられる持久性向上のために適正な運動量の基準を、年令別、性別、体力別に明らかにしようとするものであり、

本、第一報では、特に、年令別、性別の最大持久走持続時間の測定結果および、トレーニング効果についての予備的実験の結果につつ
して報告することにする。

II. 研究の方法、対象および時期
被検者
中学生 文京区立第四中学校生徒各学年約30名
高校生 都立白鷺高等学校生徒
　城北高等学校生徒
私立文京学園女子高等学校生徒1、2年各約30名
計166名
測定は昭和36年3月末より昭和37年8月末までの間に実施した。

以上、各年令男女約170名を対象に測定を実施したが、T.K. Cureton(註)等の研究においては、トレッドラミルの傾斜8.6％(約5度)で実施しているので、今後の測定結果の比較検討を考慮して、同様の傾斜とし、被検者は、あらかじめ心電図によって心臓疾患者有無を検査し、一回トレッドラミル上での歩行、疾走の練習をした後、各は三段階、例えば中学生の場合は毎分160m、180m、200mの速度における最大持久走時間を測定した。
なお、安静時および運動直後、1分後、2分後、3分後の脈拍数を併せ測定した。

III. 測定の結果
1) 性別、年令別の最大持久走時間
上述のような各三段階の速度における最大持久走時間の性別、年令別平均値を示す第1表および第1図のとおりである。
これによってみると、男子では、年令のすすむにしたがつて、最大持久走時間は長くなっている。しかし女子の場合には、14才頃までは従かなかなかのびているが、15才ないし17才の間で顕著なのびを認めることができず、最大持久走時間は15才を上限にして、それ以後では短かくさえなっている。
この点は、果して、女子の全身持久性は既にこの年齢において一般常界に達するものであるか、あるいは、本来伸ばされ得るものであるにもかかわらず、適切なトレーニング

第1表 性・年令別の最大走行持続時間平均値

(年令の次の(　)の中に数字は被験者数)

<table>
<thead>
<tr>
<th>年令</th>
<th>速度</th>
<th>160m/min</th>
<th>S. D.</th>
<th>180m/min</th>
<th>S. D.</th>
<th>200m/min</th>
<th>S. D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>17才(12名)</td>
<td>男</td>
<td>16(18)</td>
<td>9</td>
<td>31</td>
<td>3</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>14才(14名)</td>
<td>男</td>
<td>13(14)</td>
<td>3</td>
<td>02</td>
<td>1</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>12才(12名)</td>
<td>女</td>
<td>16(14)</td>
<td>2</td>
<td>54</td>
<td>1</td>
<td>17</td>
<td>1</td>
</tr>
</tbody>
</table>
の不足によってこのような結果となったのかも知れぬが、今後、検討されるべき余地が残されている。

以上の速度別最大持久走時間の平均値と年令との関係をみたのが、第2図である。これによつて、前に述べたように男子の場合は、年令に応じて最大持久走時間は着実に増大しているが、女子の場合には15才頃より停滞現象を示していることが一層明らかになるのである。

男子と女子を比較してみるならば、最も著しい結果を示している女子の15才平均値は、なお男子の12才の平均値以下であり、最大持久走時間は年令のずすむにしたがつて、男女間

に著しいへだたりを生じてくるのである。

第1図を、時間を対数にとって書き代えると第3図になる。

2) 最大持久走時間と体格の発育との関係

最大持久走時間と身長との関係をみてみると、第4図のようである。男子、女子とも身長の大なるものほど持続時間も長いことが明らかにされる。

また、走行速度毎180mの場合における最大持久走時間と体重、胸囲との関係をみたものが第5図である。これならからいえることは、最大持久走時間の増加は身長、体重、胸囲などの体格の発
第3図 性、年令別トレッドミル持久走時間
横軸はトレッドミル速度（m/分）、縦軸は
持走時間（分）（対数）を示す。グラフの傍の数字は年令を示す。

第4図 持久走時間と身長との関係

第5図 持久走時間と、胸囲・体重との関係
3）最大持久走時間の個人差

前述のように最大持久走時間と体型の発育との関係には密接な関係があるので、当然同年令の間において個人差のあることが予想される。例えば12才の場合についてみると第2表のとおりである。平均値と標準偏差の図を併せて記載する。

男子の場合、毎分160mの速度において、最高11分55秒、最低1分06秒であり、その差は10分以上もあることは注目すべきであることにある。このことは、体力に応じた身体運動の負荷の必要性を示す一つの事例といえることができる。

4）最大持久走時間のトレーニングによる向上

さて、以上のように、年令別の、性別の最大持久走時間の全般的傾向を明らかにすることができたので、さらに、トレーニングを実施した場合に、この持続時間はどのように変化するかを明らかにするための予備的実験を小学5年生5名について実施したので、その結果を付記する。

対象は小学生なので、トレッドミルの走行速度は毎分140m、160m、180mの三段階について行なう。各人の最大持久走時間をあらかじめ測定し、ついて、この結果から各人が5分以上走行できる速度を求め、その速度で5分間走ることをもって各人の運動負荷量とした。

第7図のようにS.T., T.S.A., J.F., T.S.の4名は毎分160mの速度、T.W.は毎分140mの速度でトレーニングを行なった。

練習日は、1週3回、隔日に行ない、これを4週間継続実施し、4週間後に再び毎分140m、160m、180mの三段階の速度における最大持久走時間を測定した。その結果は、第7図に示すとおりであり、T.S.を除き、他の4名は何れも最大持久走時間が著しいのを示しており、特に毎分140mという比較的遅い速度における持続時間の増加が著しいことを示している。

このことは、やはり適正な運動を継続的規則的に負荷するならば、その能力は向上することを示すものであり、如何なる
第7図 小学生のトレッドミルによるトレーニング効果。トレーニング前とトレーニング後の持久走時間の比較。矢印はトレーニングを行った速度を示す。

考 索

本研究のねらいは、青少年の身体に、充実した発育をとげるような適切な運動を処方することである。しかし充実した発育ということも内面的立場により、身体の把握のしかたにより異ったものになるであろう。著者らは、充実した発育というものの中核に持久性を考えた。その理由は、持久性は生命を維持し、また生活中の中核となるべき機能であり、全身の諸器官の調和のとれた、統制された共同活動を必要とするものであると考えられるからである。

そこで、問題は、何故にまず持久走時間を測定したかということである。持久性には、オートメーションの監視作業とか、事務をとるとか、精細な手の技術を要する作業とか、長時間つづけなかったからというものがある。これは、いわば動的持久性である。これにたいして、荷物を運搬するとか、長距離を歩くとか、長距離を走るとか、というように、全身を長時間わたって動かすというような作業とある。これは、いわば動的持久性である。前者が生活に必要なこととはいうまでもない、しかしこれは体力の一面にすぎない、そしてや々すれば、心臓や肺臓の機能よりも、筋肉や神経の機能が主要な限定因子となることが多い。しかし後者、すなわち動的持久性では、筋肉や神経のみでなく、心臓や肺臓をはじめ、内分泌その他、代謝機能もすべて関与し、これらの総合機能が限定因子となる管である。本研究で、持久走という動的持久性を取扱ったのはこのためである。そこでまず男女青少年が、どのスピードで、どれくらいの時間走ることができるかということを知らなくてはならなかった。しかし、一つのスピードで測定することは、個人の持久性の特長の全貌を知るには不十分であるので小数とも、2種類、あるいは5種類のスピードで測定しなくてはならないと考えられる。しかしこのとき、2〜3種類のスピードとついても、いつたいどれくらいのスピードを与えるべきかということには、何かの基準がなくてはならない。これに関して、これまでReindell H.4等は、全身の持久性を見るためには、数分間定常状態を保つうる強度の運動を
荷すべきで、これにより3～6分の間に全身の器官が活動に参加するようになると考えている。彼はこの程度の運動は一般男子では200wattであり、運動選手では300wattであるとしており、この程度の運動で3～6分の間の安定状態を、相対的安定状態と名づけてい

Astrand, P.O.等も持久性を観るための負荷として、数分でall-outになる程度のものを用いている。Cureton, T.K.は、持久性を知るためには、トレッドミルの走行スピードはきわめて遠いという必要はないが、呼吸一循環系にオーバーロードが加わるようなスピードでなくてはならないとしている。そのスピードとは、5分間、またはそれ以内に走れなくなる（all-out）というくらいである。これは8.6%の傾斜（約5度の上り坂）のトレッドミルでは、毎時7マイル（188m/min）くらいがふつうであり、一流走者では毎時10マイル（約268m/min）であるとしている。

5分間という時間は、欧州でも、米国でも用いているところの基準であり、またハード・ステップ・テストが5分間の昇降運動を行うというのも同様の考えかたによるものであろう。

著者等が、3種類の任意のスピードで測定を行ったのも、この5分間でall-outになるスピードを見出そうという手順の一つであったといえる。

第3図に見るように、3種類のスピードで測定された持久走時間は、これを時間を対数にとった図表にして見ると、持久走時間（対数）とスピードとの間に直線関係があることがわかる。このことは、5分間走りうるスピードを見出すのに便利なことである。それは多くの内挿法により、時には外挿法により、求めるスピードを推定することができるからである。この直線は、第3図では各年年別に示したわけであるが、個人別に見ても同様である。しかし個人別にみると、この直線の傾きは人により大きいものと、小さいものとがある。しかし平均値でみれば、女子より男子の方が傾斜が大きく、且つ直線が上の方にある。また女子では160m／分（傾斜5度）でも5分間走ることはできない。したがって、5分間走りうるためには、140m／分以下にスピードを下げなくてはならない。これにたいして男子では180m／分であれば、13才以後では5分間走破できることになる。しかしこれは個人別に見ると、同一年令でも相当にひらがりがあり、第2表に見るように、12才の男子で160m／分では、最大持久走時間は11分55秒であるのに、最小のものは1分6秒である。この年令の平均値は3分54秒であるので、きわめて大きい個人差があることが知られる。12才の年令は身体の形態的発育について見ても、きわめて大きい個人差があらわれる時代であることを考えれば、当然のこととも知れない。

いま、持久走時間をスピード別にして、身長発育との関係で見るときは、第4図に見るように、これによると、持久走時間は身長の増加と密接な関係をもって増大することがわかる。しかし、身長の増加は身体発育の一つの指標としての意味をもっているわけで、これと持久走時間がほとんど比例して増大するということは、持久走時間が身体発育に伴っていることを示すものである。このことは女子でも僅かに見られるが、男子にくらべるときわめて軽度の関係しかない。身長の代わりに、胸囲や体重の増加をとつしても、持久走時間と身長の関係にあることは、持久走時間の増大が身体の全般的発育に平行していることを意味している。

以上の結果から、5分間でall-outになる程度のトレッドミル走行スピードが算出でき、これが持久性の一つの指標ともなる。これはCuretonが示したものと共通のものである。
が、本研究では、日本人青少年について求めたものである。

さらに、5分間というものの意味をひろげ、これをトレーニングの面から利用しようとするのが本研究におけるトレーニングの予備的研究である。その結果は、ときに示したように、小学生において、きわめて著明な効果を示している。すなわち、はじめ5分間でall-outに近いスピードで5分間のトレーニングを行い、1日おきに同一のトレーニングを行うとき、おそらく走能力はのびているであろうにも拘らず、走行時間を5分間にとどめてくりかえしていくとき、4週間ののちには、はじめの2倍に近い走行時間を示した。これは持続性の著明な増大である。しかも、これらの小学生たちは、トレーニングのあとで、全般的な健康の増進と、水泳、陸上競技その他の運動能力も著明に増進を示したことが、担任の教師によって報告されていること、また家族における観察報告から見て、このトレーニングが、体力全般的におわたってよい効果を及ぼしたものであることが明らかとなつた。このことは、この方式による運動の処方と、この処方によるトレーニングが単に持続走時間の増大にとどまらず、実質的な体力の向上に資するものであるという説明を与えるものであると考えられる。

結論

1) トレッドミルを用いて、年令別、性別、の三段階の速度の場合における最大走行持続時間の平均値を明らかにすることができた。

2) 男子の場合、最大走行持続時間は年令の増加にともなって上昇するが、女子の場合は15才を上限にして、それ以上の年令では停滞を示している。

3) 男子と女子との差異はかなり大きく、14才以上の平均値でも男子の12才の平均値よりも下回る。

4) 最大走行持続時間を身長、体重、胸囲の発育発達との関係をしきらべることにより、持続性の発達は、身体の形態発育にともなって生ずるといわゆることがわかった。

5) 小学生5年生を被検者に選び、トレーニング効果についての予備的な実験を行ない一日5分間のトレッドミル走を隔日に4週間行うことにより、持続性に明らかなトレーニング効果をみた。

本研究は文部省機関研究により、東京大学教育学部体育学研究室にて行われたものであり、この報告はその原著第一報である。

文献


3) 猪飼道夫(1963): スポーツと健康管理(青年期一青年期に適切な運動の処方一第16回体力医学会総会).

4) 猪飼道夫, 江橋慎四郎(1961): トレッドミル法による青少年の運動処方に関する研究(第1報), 体育学研究, 第7巻, 第1号, p.173.

5) 猪飼道夫, 水野忠文, 江橋慎四郎, 加賀谷熙彦(1962): トレッドミル法による青少年の運動処方に関する研究(第2報), 体育学研究, 第8巻, 第1号, p.354.

6) President Council on Youth Fitness. (1961): Youth physical Fitness.

(2) The extension quantity by the two-point method at normal, after-exercise (within 20 minutes) and after-bath (within 20 minutes) conditions were compared with. The after-exercise measurement showed the largest quantity on every place, 1.0 mm per 10 mm increase than at normal times. Whereas the normal and the after-bath conditions showed little difference.

(3) The moved quantity by the one-point method was 31.0 mm normally, 32.7 mm after exercise and 28.8 mm after bath on the average of about 4 places.

Optimal Exercise Standards for Physical Fitness of Youth

By
M. Ikai, S. Ebashi, H. Kagaya; University of Tokyo

For the first step of a study of selecting the optimal standards for physical fitness of youth, treadmill running time was measured as an index of endurance of 180 school boys and girls aged from 10 to 18. Each subject was asked to run until exhaustion at three different speeds on the treadmill with a 8.6% slope.

The results obtained were as follows:
1) Average maximum endurance time on the treadmill was plotted against the speed related to age and sex. A gradual increase of the endurance running time on the treadmill in boys was shown, while in girls it stagnated before 15 years of age. Therefore, there appeared a great difference of endurance running time between boys and girls in advancing age.

2) Average endurance running time of boys aged 12, for example, was found to be about 4 min., 2 min. 8 sec., and 1 min. 21 sec. at the speed of 160 m/min., 180 m/min., and 200 m/min. respectively and exceeded that at girls aged 14.

3) The improvement of endurance running time in advancing age was closely related to the development of physique as height, weight and chest girth.

4) After training of 5 minutes running on the treadmill in every other day for four successive weeks, 5 normal boys of 5th grade of elementary school showed a remarkable increase of endurance running time together with an improvement of general activities in their school lives.