抗がん剤用安全取扱器具
PhaSeal® system の操作性の評価

宮松洋信1, 坂本真澄1, 東加奈子1, 安井文雄1, 前彰1, 佐藤京子1,
小浦千勢1, 河野佳代1, 齋藤薰1, 阿部順子1, 明石貴雄1
東京医科歯科大学病院薬剤部1, 生物薬師部1

Evaluation of Operability of the PhaSeal® system,
a Sealed Handling Device for Anticancer Agents

Hironobu Miyamatsu1, Masumi Sakamoto1, Kanako Azuma1, Fumio Ishii1, Akira Mae1,
Kyoko Sato1, Chise Koura1, Kayo Kouno1, Kaoru Saito1, Mitsuko Abe1 and Takao Akashi1
Department of Pharmacy1, Department of Nursing2
Tokyo Medical University Hospital

[Received July 3, 2006]
[Accepted October 13, 2006]

Most antineoplastic agents used in chemotherapy are cytotoxic and could damage the health of medical staff when they are exposed to them. To counter this risk, a safety cabinet is commonly used. Since such cabinets have been reported to be lacking, the PhaSeal® system (PS-s, a sealed-type safety device) was developed for use with the safety cabinet, and has been reported to be effective in studies done in Europe and the US. We tested the PS-s at a medical institution in Japan with regard to suitability and ease of operation. In the testing, the PS-s was compared with the conventional system (C-s) as regards preparation time using ten pharmacists and ten nurses as subjects. Afterwards, a questionnaire survey on the test results was conducted.

The total preparation time required for C-s was 42.6 ± 14.15 seconds and that for PS-s was significantly longer at 63.3 ± 14.99 seconds (p<0.01). The time required for aspiration of drug from the vial was 27.2 ± 9.08 seconds for C-s and 17.7 ± 5.53 seconds for PS-s, which was significantly shorter (p<0.01). The questionnaire survey results indicated that PS-s was much safer to use for medical professionals but their opinions were divided as to whether it was easier to operate or not. We concluded that PS-s would be useful in the preparation of cytotoxic anticancer agents if medical staff could become more familiar with its operating procedure.

Key words — PhaSeal® system, cytotoxic anticancer agents, exposure, suitability and ease of operation, preparation time, questionnaire survey

緒 言

化学療法は手術療法、放射線療法と並びがん治療における3本柱の一つである。最近では、2002年3月に外来化学療法が員(1患者1日300点、2002年4月より400点に引上げ)が診療報酬法として評価され、がん治療のより良いQOLの維持向上を目的に外来化学療法を実施する施設および件数が増加している3。一方、分子標的治療薬をはじめとした新規抗がん剤の開発・上市もさかんとなり、手術や放射線療法が主流であった癌治療におい
ため、われわれが日本病院薬剤師会が1991年に抗がん剤の取扱いに関するガイドラインを制定し、その後1994年、さらに2005年5月に改訂版が発行され、多くの施設がそれに従い抗がん剤調剤業務を行っている。しかし、欧米では安全キャビネット単独では医療従事者の抗がん剤暴露を十分に防げないとの報告を受け、密閉型の安全採取器具であるPhaSeal®システムを併用しきりへの有用性が報告されている。

しかし、残念なことにPhaSeal®システムは現在ではまだ医療機器として承認されておらず、その存在を知る医療従事者も少ないのが現状である。PhaSeal®システムはバイアルに装着するProctorや注射筒に装着するInfusion Adapterなど構築され、抗がん剤など化学療法剤を投与する薬剤を安全に調製・投与できる医療機器である。

PhaSeal®システムの構造と特徴を下記に示すが、その具体例に関して操作テクニックの意義を持つ必要がある。そこで、PhaSeal®システムの数多くの医療機器への適応性および操作性を検討する目的で、引き続き操作の必要性を検討し、各使用理由をアンケート調査し、通常の注射筒・針を使用するConventional systemと比較検討した。

PhaSeal®システムの構造と特徴

PhaSeal®システムの構造をFig.1に示した。PhaSeal®システムの特徴は、Double membrane system（以下、DMSと略す）と等圧機構にある。Injectoを他の部品との接続部はmembrane coverでシールされている。

Fig.1. Structure of the PhaSeal® system.

1. 試料

吸引操作にともなうスプラッシュで発生するスピリリーロークの確認を容易にする目的で、0.2％Fluorescein 液 10mLを充填したバイアルを調製し試料とした。Fluoresceinは試薬一級（和光純薬工業㈱）を、バイアルはリングパイル（10mL容量、A-No.3、マルエム㈱）、プチガラム製バイアルキャップ（マルエム㈱）、アルミシール（マルエム㈱）を使用した。

2. 器具

PhaSeal®システム（Carmal Pharma, Sweden、以下、PS-sと略す）

PS-sの内、バイアルに装着するProtector 21とシリンジに装着するInjectoを用い、注射筒には20mL容量のシリンジ（テルモ㈱）を使用した。

Conventional system（以下、C-sと略す）注射針には18G 1/4”RB針（テルモ㈱）を、注射筒には20mL容量のシリンジ（テルモ㈱）を使用した。

3. 被験者

東京医科大学病院に勤務する薬剤師および看護師各10名、計20名を被験者とし、薬剤師および看護師とも注射剤の混合調製業務の経験を有する者とした。また、看護師は日常的に抗がん剤注射剤の混合調製業務を行う内科または外科病棟に勤務する者とした。薬剤師では抗がん剤注射剤の混合調製業務について経験の有無を被験者の条件とした。

4. 吸引操作の要約時間

被験者は、PS-sの構造と取扱い方法（Fig.2）の説明を受けた10分間の事前トレーニングを行った後、吸引操作要約時間の測定を実施した。被験者1名あたりPS-sを使用した場合にC-sを使用した場合とで比較の5回ずつ吸引操作を行い、吸引操作の要約時間測定した。要約時間の測定点は下記の操作項目とし、測定にはストップウォッチを用いた。
所要時間の測定点とした操作項目

① PS-s の測定点
 a) 包装を外し Protector 21をバイアルに装着（Fig. 2－1）
 b) 包装を外し Injector Luer Lock を10mLの空気を吸入した20mLルアーロック式シリンジに装着（Fig. 2－2）
 c) Injector Luer Lock 付シリンジを Protector 21に装着（Fig. 2－3）
 d) 0.2% fluorescein 液を全量吸引（Fig. 2－4－6）
 e) Protector 21から Injector Luer Lock 付シリンジを脱着（Fig. 2－7－9）

② C-s の測定点
 f) 包装を外し18G ½”RB 針を20mLルアーロック式シリンジに装着し、10mLの空気を吸入
 g) 0.2% fluorescein 液を全量吸引
 h) 針をバイアルより抜きキャップ

5. アンケート調査

吸引操作の所要時間を測定した後、PS-s の操作性について Fig. 3 に示す用紙を用いてアンケート調査を実施した。

結果

1. 被験者の背景

被験者の背景を Fig. 4 に示した。性別は薬剤師が男性45人、女性35人、薬剤師は女性のみであった。職歴は、薬剤師では3年未満が50％、3～5年が20％、5年以上が30％、看護師では3年未満が30％、3～5年が40％、5年以上が30％を占めており、全体では5年未満が60％を占めていた。注射剤混合調製の経験年数、薬剤師では1年未満が50％、1～3年が30％、看護師では1年未満が80％、1～3年が20％を占めており、全体では3年未満が70％を占めていた。抗がん剤注射剤混合調製の経験の有無は、看護師では全員が経験をしていたのに対し、薬剤師では70％が未経験であった。

2. 吸引操作の所要時間

吸引操作の所要時間を Table 1 および Fig. 5 に示した。全操作所要時間は C-s 使用時では看護師：42.3±11.57秒、薬剤師：42.8±11.33秒、Total：42.6±11.15秒、PS-s 使用時では看護師：65.8±18.34秒、薬剤師：60.8±11.15秒、Total：63.3±14.99秒であり、PS-s 使用時の方が有意（看護師、薬剤師ともにp<0.01）に時間要要要了。しかし、薬液吸引時間（バイアルへの針挿入から薬液の吸引完了までの所要時間）所要時間測定点d およびg）は C-s 使用時には看護師：27.1±9.94秒、薬剤師：27.3±8.68秒、Total：27.2±9.06秒、PS-s 使用時では看護師：18.2±6.65秒、薬剤師：17.2±4.46秒、Total：17.7±5.53秒であり、PS-s 使用時の方が有意（看護師 p<0.05、薬剤師 p<0.01）に短かかった。また、PS-s 使用時には、Protector 21をバイアルに装着する時間が16.6±4.62秒、Injector Luer Lock をシリンジに装着する時間に16.2±3.53秒とこの2操作で全所要時間の約半分の時間を要した。

なお、吸引操作におけるスプラッシュは PS-s 使用時では一例も発生せず、スビリやリークもまったく確認されなかった。一方、C-s 使用時は44％の高頻度でスプラッシュが発生し、スビリやリークが数多く確認された。総合的に、看護師、薬剤師ともに安全性の観点から PS-s 使用が好ましいと判断した。

3. アンケート調査

アンケート調査の結果 Fig. 6 に示した。C-s 使用時のスプラッシュは、看護師および薬剤師とともに全員が経験していた。その頻度は、吸引操作10回につきスプラッシュ経験1回以上が最も多く看護師の90％、薬剤師の80％、Totalでは85％を占めていた。また、C-s を対照とした PS-s の総合評価は、安全性では【優】が85％、【やや優】が15％を占め、PS-s が優れているとの評価であった。なお、薬剤師は全員が【優】の評価を下していた。一方、操作性では【優】が15％、【やや優】が5％、【同等】が50％、【やや劣】が30％と評価が分かれた。

PS-s の操作手順で評価が低かった項目は、① Protector 21をバイアルに装着する（Fig. 2－1）、② Injector
抗がん剤用安全取扱キット PhaSeal® system のアンケート調査

<table>
<thead>
<tr>
<th>職種</th>
<th>看護師</th>
<th>薬剤師</th>
<th>性別</th>
<th>男性</th>
<th>女性</th>
</tr>
</thead>
<tbody>
<tr>
<td>職歴</td>
<td>年</td>
<td>ケ月</td>
<td>注射薬配合調製経験年数</td>
<td>年</td>
<td>ケ月</td>
</tr>
</tbody>
</table>

1. 抗がん剤注射薬の混合調製をしたことがありますか。
 あり ない

2. 通常シリンジ・針使用時のバイアルからの吸引計量操作について
 (1) 針の刺入時および抜去時に液漏れ（スプラッシュ）を経験しましたか。
 あり なし
 (2) スプラッシュの程度はどの程度ですか。
 毎回 10 回に 1 回程度 50 回に 1 回程度 100 回に 1 回程度それ以上不明

3. PhaSeal® system 使用時のバイアルからの吸引計量操作について
 a) Protector 21 をバイアルに装着する。（図 1.1）
 (1) 装着できたか。
 できた できなかった（5回のうち 3 回できなかった）
 (2) 装着に手間取ったか。
 やや手間取った 手間取った
 b) Injector Luer Lock を吸引管の空気を吸引したシリンジに装着する。（図 1.2）
 (1) 装着できたか。
 できた できなかった（5回のうち 3 回できなかった）
 (2) 装着に手間取ったか。
 やや手間取った 手間取った
 c) Injector Luer Lock 付シリンジを Protector 21 に装着する。（図 1.3）
 (1) 装着できたか。
 できた できなかった（5回のうち 3 回できなかった）
 (2) 装着に手間取ったか。
 やや手間取った 手間取った
 d) 0.2% Fluorescein 溶液を吸引計量する。（図 1.4～6）
 (1) Safety latch の解除に手間取ったか。
 その他 手間取った
 (2) Safety latch の解除を忘れて針を刺入しようとしたか。
 解除を忘れた（5回のうち 3 回忘れた）
 (3) 針をうまく刺入できたか。
 できなかった（5回のうち 3 回できなかった）
 (4) 鉤に手間取ったか。
 やや手間取った 手間取った
 (5) 鉤を正しく取れたか。
 できなかった（5回のうち 3 回できなかった）
 (6) Protector 21 内に薬液が逆流したか。
 逆流した（5回のうち 3 回逆流した）
 e) Protector 21 から Injector Luer Lock 付シリンジを抜着する。（図 1.7～9）
 (1) 脱着できたか。
 できた できなかった（5回のうち 3 回できなかった）
 (2) 脱着に手間取ったか。
 やや手間取った 手間取った
 (3) 針を抜きずに脱着しようとしたか。
 しなかった（5回のうち 3 回しなかった）
 (4) Injector Luer Lock のLock はできなかったか。
 できなかった（5回のうち 3 回できなかった）

4. 総合評価
 PhaSeal® system と既存の器具との比較
 安全性： 優 やや優 同等 やや劣 劣
 操作性： 優 やや優 同等 やや劣 劣

5. その他、感じたことを自由にお書きください。

以上

Fig. 3. Questionnaire form about Operativeness of PhaSeal® system.
Luer Lock をシリンジに装着する (Fig. 2-2, ③), (3) Injector Luer Lock を装着する前にシリンジ内に所定量の空気を吸引する (Fig. 2-2, ①), (4) シリンジ付き Injector Luer Lock をバイアルに装着した Protector 21に接着する (Fig. 2-3), (5) 針をバイアルに刺入する前に Injector Luer Lock の safety latch を解除する (Fig. 2-4, ①)) の5項目であった。

自由記載意見（複数回答あり）としては、(1) Protector 21をバイアルに装着する際、硬くてかなりの力を必要とした。薬剤師2名、看護師6名、(2) 操作に慣れて、良い医療用具である。薬剤師3名、看護師2名、(3) クローズという安心感があり、薬液の吸引がとてもしやすい。薬剤師1名、看護師1名、(4) 包装の開封がしにくい（看護師2名）などがあった。

考 察

1. 吸引操作の所要時間

PS-sは Fig. 2 に示すように、C-s に比べ操作手順が多く、その操作も特徴的なものが多い。そのため、使用に際してその性能を十分に発揮するには、構造の理解と操作テクニックの修得は不可欠である。構造の理解と操作テクニックの修得が不十分であれば、事前トレーニング
1. Drug splashing with the Conventional system

Experience of splashing

<table>
<thead>
<tr>
<th></th>
<th>Pharmacists</th>
<th>Nurses</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Frequency of experience

<table>
<thead>
<tr>
<th></th>
<th>Pharmacists</th>
<th>Nurses</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>every time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>once every 10 times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>once every 50 times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>once every 100 times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>almost never</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>uncertain</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6-1. Results of the Questionnaire about the PhaSeal® system.

2. Comprehensive evaluation of the PhaSeal® system

Safety

<table>
<thead>
<tr>
<th></th>
<th>Pharmacists</th>
<th>Nurses</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>70</td>
<td>85</td>
</tr>
</tbody>
</table>

Ease of Operation

<table>
<thead>
<tr>
<th></th>
<th>Pharmacists</th>
<th>Nurses</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>much better</td>
<td>30</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>slightly better</td>
<td>30</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>same</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>slightly worse</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>much worse</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Fig. 6-2. Results of the Questionnaire about the PhaSeal® system.
5. Connecting the Injector Luer Lock to Protector 21 (Fig.2-3)

Did you need time to do it?

<table>
<thead>
<tr>
<th></th>
<th>Pharmacists</th>
<th>Nurses</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>10</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Some</td>
<td>20</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Yes</td>
<td>20</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

6. Releasing the safety latch and engaging the needle (Fig.2-4)

Did you need time to do it? ①

<table>
<thead>
<tr>
<th></th>
<th>Pharmacists</th>
<th>Nurses</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>10</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Some</td>
<td>20</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Yes</td>
<td>20</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

Did you release the latch before engaging the needle? ①

<table>
<thead>
<tr>
<th></th>
<th>Pharmacists</th>
<th>Nurses</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>10</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>No</td>
<td>20</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Some</td>
<td>20</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

Fig.6-3. Results of the Questionnaire about the PhaSeal® system.

7. Aspirating the drug into the syringe (Fig.2-5, 6)

Did you need time to do it?

<table>
<thead>
<tr>
<th></th>
<th>Pharmacists</th>
<th>Nurses</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>10</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Some</td>
<td>20</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Yes</td>
<td>20</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

Could you aspirate all of the drug from the vial?

<table>
<thead>
<tr>
<th></th>
<th>Pharmacists</th>
<th>Nurses</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>10</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Some</td>
<td>20</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Yes</td>
<td>20</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

8. Disconnecting the Injector Luer Lock from Protector 21 (Fig.2-7, 8)

Did you need time to do it?

<table>
<thead>
<tr>
<th></th>
<th>Pharmacists</th>
<th>Nurses</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>10</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Some</td>
<td>20</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Yes</td>
<td>20</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

Did you pull out the needle? ①

<table>
<thead>
<tr>
<th></th>
<th>Pharmacists</th>
<th>Nurses</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>10</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>No</td>
<td>20</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Some</td>
<td>20</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

Fig.6-4. Results of the Questionnaire about the PhaSeal® system.

ことであるといえる。PS-sの使用経験を積み重ねた理解と操作テクニックの修得度が高ければ、吸引操作所要時間もさらに短縮化されると推測する。操作テクニックの修得度と吸引操作所要時間の関係については、通常PS-sの使用開始当初では調製に時間を要するが1-2週間で操作に慣れ以前と同様の時間で調製できる、との報告もある(http://www.carmelpharma.com/faq.html)。しかし、取扱薬剤が細胞傷害性を有する抗がん剤であることを考慮すると、PS-sの使用開始時には操作テクニックを十分に修得していることが望まれる。この点を
The PhaSeal® system is simple to use, but it is necessary to understand the device and use it properly. As in this example, liquid drug flowed backward into the Protector 21, because when the syringe was injected into the vial the vial was in a position above the syringe (cf. Fig.2-5). The syringe should always be injected with the vial placed below the syringe.

Fig. 7. Example of Failure Due to Operational Mistake using the PhaSeal® system.

When attaching the Protector 21 by hand into the vial, considerable force had to be used. Because of that an imprint mark remains in the palm of the hand, which most of the people participating in the study complained about. The hand shown on the photo to the right, is that of a person who has pushed down the Protector 21 into the vial five times. The manufacturer now has a special device for installation, which was not available at the time of the study.

Fig. 8. Imprint Mark in the palm after the Protector 21 Installation.
あり、追試を検討している。PS-sの使用が初めで、
なおかつ僅か10分間の事前トレーニングのみ受講した医
療従事者であっても、より使用経験が豊富なC-sに比較
しPS-sでは有意に短時間で薬液を吸引できたことは、
PS-sが優れた安全性と操作性を有していることを証明
していると考える。

2. アンケート調査

総合評価の安全性において、今回初めてPS-sを使用
した薬剤師・看護師が極めて高い評価を与えており、
PS-sの安全性が改めて実証されたといえる。高評価の
要因としては、C-s使用時でのスプラッシュを数多く経
験してきた被験者がPS-s使用時には誰一人としてスプ
ラッシュの発生を経験しなかったことが指摘される。す
なわち、アンケート結果より、その85％が10回に1回以
上の割合でスプラッシュの発生を経験している被験者が
行った、延べ100回のPS-s使用操作でスプラッシュの発
生が皆無であったことは、PS-sの安全性を十分に証明
しているといえる。

操作性では評価が分かれたが、[やや劣]の評価が30％
あるものの[劣]の評価はなく[同等]以上の評価が70％
であり、PS-sの操作性に特に問題はないとといえる。評
価が分かれた要因としては、PS-sに不慣れであること
が挙げられる。PS-sはシンプルであるが特徴的な構造
を有する。そのため、吸引操作の要所時間が考察すること
で、使用に際してその性能を十分に発揮するのは、
構造の理解と操作テクニックの修得は不可欠である。
PS-sの操作手順で評価が低かった項目のいずれかが、
PS-sの構造にともなう独自の操作であり、操作に時間
を要していた。特に、Injector Luer lockを装着する際に
あらかじめシリンジ内に所定量の空気を吸引する操作
(Fig. 2-2, ①)では、約半数の被験者がシリンジ内に
空気を吸引せずにInjector Luer lockに装着する誤操作を
行っていた(Fig. 6-4)。これは、C-sでは針を装着し
たシリンジ内に空気を吸引するのが通例であり、Injector
Luer Lockのsafety latch解除忘れなどと同様に、PS-sの
構造に特徴を十分に理解していないがの誤操作と考え
られた。

Protector 21をバイアルに装着する操作(Fig. 2-1)は
評価が低く、自由記載意見においても操作のしつらえを
指摘する声が多かった。その原因としては、吸引操作の
要所時間を考察でも述べたように、バイアルに密着させる
ためのProtector 21の構造も一因と推測されるが、試
料に用いた院内製剤のバイアルの形状に少なからず原
因があると考える。

操作性の評価が分かれたものの、被験者に対するPS-s
の事前トレーニングが僅か10分間と短時間であり十分で
はなかったことを考慮すれば、安全性のみならず操作性
においてもPS-sが優れていることが示唆された。

わが国で市販されている抗がん剤注射剤には、現在の
化学療法の標準的用法・用量に対応した大容量製品の製
造が少ない(天野好俊, 加藤裕久, 吉野明教, 東北労
務, 日本と米国における注射用抗がん剤规格の比較調
査, 第15回日本医療薬学会年会講演要旨集, p. 239),
5-FUなどのアンプル剤がある等。PS-sを使用する上
で解決すべき問題がある。また、正確な値が不明であ

るが、欧米ではProtector 21とInjector Luer Lockの1キットが13前後との報告もあり[12]、わが国の医療経済の現状を考えると使用コストも大きな問題となる。しかし、PS-sを使用することにより抗がん剤注射剤の調製をより安全かつ短期間に行うことが可能であり、抗がん剤をより扱い医療従事者の安全確保の点でPS-sは極めて有用な医療用具である。近年、安全キャプネットの設置や防護ガウン・手袋・ゴーグルなどの防護用具の着用が普及し、抗がん剤調製時の安全対策は向上してきている。一方、十分な安全対策が図られない状況下で簡易的防護用具の着用のみで、抗がん剤調製業務を行っている施設が未だ多いのも事実である。さらに、抗がん剤投与時の安全対策については、特に考慮されていないのが現状である。投与時の危険性は調製時と同等と考えるべきであり、十分な安全対策の確立が望まれる。PS-sは調製時のみならず投与時のスビルやレリックによる抗がん剤の暴露も防止でき、薬剤投与に係わる医療従事者の安全も確保できる。

わが国においても、PS-sの早急な導入が望まれる。

謝辞　本研究に際し多大なるご協力をいただいた、スウェーデン大使館商務部副課長　市巻美幸に深謝申し上げます。

引用文献
1) 坂英雄、馬場秀夫、南博信、藤原範之、安藤昌彦、青幾健二、山崎泰斗、中宣敬、外来通院がん治療の安全性の確立とその評価法に関する研究。厚生労働省がん研究助成金による研究報告集。平成16年度、233-234 (2004)。
5) J. Vandenbergrouche, H. Robays, How to protect environ-

ment and employees against cytotoxic agents, the UZ Ghent experience, "J Oncol Pharm Pract, 6", 146-152 (2001).
12) 日本病院薬剤師学会学術委員会第一小委員会編、抗悪性腫瘍剤の院内取扱い指針、日本病院薬剤師会、1991、pp.1-62。
13) 日本病院薬剤師学会学術委員会第一小委員会編、抗悪性腫瘍剤の院内取扱い指針－第2版－、日本病院薬剤師会、1994、pp.1-75。
14) 日本病院薬剤師会監修、北田光一、森川信明、加藤裕久、中山寺昭、抗悪性腫瘍剤の院内取扱い指針改訂版 抗がん剤調製マニュアル、じょう、東京、2005、pp.127-146。
