Correlation between Time of Ingestion or the Ingested Aconite Plant Parts and Aconite Poisoning-Induced Arrhythmia

Poisoning and Drug Laboratory Division, Critical Care and Emergency Center, Iwate Medical University Hospital

Department of Pharmacy, Iwate Medical University Hospital

Department of Emergency Medicine, Iwate Medical University School of Medicine

Key words

Introduction

Correlation between Time of Ingestion or the Ingested Aconite Plant Parts and Aconite Poisoning-Induced Arrhythmia
Materials and Methods

Table 1

Results
Fig. 1

5 hr after ingestion, VT

10 hr after ingestion

8 hr after ingestion, Tdp

24 hr after ingestion

8 hr after ingestion, Vf
Discussion

The results of the pharmacokinetic analysis for the three patients are as follows:

Patient 3
- The regression line is described by the equation $y = -0.0725x + 1.0437$ with $R^2 = 0.99$.
- The serum concentration decreases over time, indicating a rapid elimination.

Patient 6
- The regression line is described by the equation $y = -0.1120x + 0.5817$ with $R^2 = 0.99$.
- The serum concentration also decreases over time, showing a slightly slower elimination rate compared to Patient 3.

Patient 7
- The regression line is described by the equation $y = 0.1625x + 1.4998$ with $R^2 = 0.93$.
- The serum concentration decreases over time, but the elimination rate is slower than in Patients 3 and 6.

These findings suggest that the absorption and elimination rates of Lidocaine vary among different patients, which could have implications for dosing and treatment strategies.

Figure 1. Graphical representation of serum concentration over time for Patients 3, 6, and 7, showing the elimination kinetics of Lidocaine.