Short Communication

Intracisternal Injection of Basic Fibroblast Growth Factor Reduces the Severity of Gastric Mucosal Lesions Evoked by Ethanol in Rats

Yasuo Watanabe, Toshikatsu Okumura, Shu Onodera, Nobuhiko Takahashi, Etsuro Shoji, and Yutaka Kohgo

The Third Department of Internal Medicine, Asahikawa Medical College, Asahikawa, 078 Japan

Summary: This study was conducted to examine the hypothesis that basic fibroblast growth factor (bFGF) may have an anti-ulcer action through an acid-independent mechanism. The intracisternal injection of bFGF (1 μg/10 μl) significantly attenuated the development of gastric mucosal damage evoked by either subcutaneous indomethacin or intragastric absolute ethanol. On the other hand, intraperitoneally injected bFGF (1 μg) failed to inhibit the formation of gastric mucosal injury by indomethacin or ethanol. These results suggest that bFGF acts in the brain to exert a gastroprotective action. Since ethanol-induced gastric lesion formation does not depend upon luminal acid, we speculate that an acid-independent mechanism might mediate the anti-ulcer action of central bFGF. [Japanese Journal of Physiology, 47, 231–233, 1997]

Key words: basic fibroblast growth factor, central nervous system, gastric ulcer.

Increasing evidence suggests that basic fibroblast growth factor (bFGF) has central nervous system actions in addition to its growth-promoting activities of epithelial cells [1–5]. For instance, bFGF and its receptors were identified in the central nervous system and centrally injected bFGF suppressed food intake in rats and mice [2–5]. These results suggest that bFGF may act in the brain to have an action on feeding behavior. Baird et al. [1] demonstrated a nonmitogenic pituitary function of FGF, indicating that bFGF may modulate the neuroendocrine system. Along this line, we have demonstrated that intracisternal but not intraperitoneal administration of bFGF inhibits gastric secretion, gastric emptying, and the development of gastric ulceration induced by central injection of thyrotropin-releasing hormone (TRH) or water-immersion restraint stress [6–8]. These results suggest that bFGF may act as a chemical messenger in the brain to regulate gastric function.

A number of gastric factors, such as acid secretion, mucus secretion, mucosal blood flow, and mucosal prostaglandin levels, are related to the development of acute gastric mucosal lesions. Since our previous studies demonstrated that gastroprotective action was seen after central injection of bFGF in antisecretory doses [6, 8] and the above two gastric ulcer models (TRH and water immersion stress) are dependent upon, at least in part, gastric acid secretion [9–11], it was speculated that the inhibition of acid likely contributed to the anti-ulcer action of central bFGF. However, we cannot exclude the possibility that factors other than acid may be involved in the gastroprotective action of bFGF. To address the problem, we examined, in this study, the effects of central bFGF on the development of ethanol-induced gastric injury, a gastric ulcer model that is independent of gastric acid secretion [12].

Male Sprague-Dawley rats weighing 250–300 g were housed under controlled light/dark conditions (lights on: 07:00–19:00) with room temperature regulated to 23–25°C. Rats were allowed free access to food (solid rat chow, Purina, Richmond, IN, USA) and tap water. All experiments were performed on conscious animals deprived of food for 24 h but with free access to water up to the initiation of the experiment.

Received on October 24, 1996; accepted on January 6, 1997
Correspondence should be addressed to Toshikatsu Okumura, The Third Department of Internal Medicine, Asahikawa Medical College, 4–5 Nishikagura, Asahikawa, 078 Japan. Fax: +81–166–65–5183

Indomethacin was obtained from Sigma Chemical (St. Louis, MO, USA) and dissolved in 7.5% sodium bicarbonate immediately before the experiment. The bFGF preparation used in this study was recombinant human bFGF (Funakoshi Co., Tokyo). This chemical was dissolved in physiological saline before being injected.

We examined the effect of intracisternal injection of bFGF on the development of experimentally-induced gastric mucosal lesions. Gastric mucosal damage was induced by intragastric ethanol or subcutaneous injection of indomethacin as described previously [13]. Rats were given an intracisternal injection (10 μl) of saline or bFGF at a dose of 1 μg just prior to being injected with absolute ethanol (1 ml) or indomethacin (30 mg/kg). Intracisternal injection was performed under brief ether anesthesia with a 10-μl Hamilton microsyringe after rats were mounted in a stereotaxic apparatus (David Kopf Instruments, Tijunga, CA, USA). To exclude the possibility that the intracisternally injected bFGF exerted its action through peripheral leakage, intraperitoneal injection of bFGF was also performed prior to the injection of the ulcer-producing agents. The animals were returned to their cage. Then, 1 h after injection of ethanol or 4 h after administration of indomethacin, the animals were sacrificed under deep ether anesthesia and their stomachs removed.

The removed stomachs were opened along the greater curvature, and the gastric mucosa was observed macroscopically to evaluate the severity of gastric mucosal lesions. The severity of gastric mucosal lesions, expressed at the ulcer index (mm), was evaluated by the total length of all mucosal lesions observed.

All results are represented as means±SEM. Comparisons between two groups were calculated by Student's t-test. p<0.05 was considered as statistically significant.

Experiments were conducted in accordance with the Guide for the Care and Use of Laboratory Committees at the Asahikawa Medical College was obtained for all studies.

Table 1 illustrates the effect of centrally injected bFGF on the development of gastric mucosal damage induced by indomethacin. Intracisternal injection of bFGF significantly inhibited the severity of the gastric mucosal lesion.

Table 1. Effect of intracisternal injection of bFGF on the severity of gastric mucosal damage induced by indomethacin.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Ulcer index (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracisternal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>11</td>
<td>10.1±2.6</td>
</tr>
<tr>
<td>bFGF</td>
<td>10</td>
<td>2.5±1.3 * p=0.031</td>
</tr>
<tr>
<td>Intraperitoneal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>5</td>
<td>11.6±1.9</td>
</tr>
<tr>
<td>bFGF</td>
<td>5</td>
<td>10.2±2.7</td>
</tr>
</tbody>
</table>

Rats received intracisternal injection of bFGF at a dose of 1 μg/10 μl or saline (control) and subcutaneous administration of indomethacin (30 mg/kg). The severity of gastric mucosal damage was evaluated 4 h after treatment. * Compared with control.

Table 2. Effect of intracisternal injection of bFGF on the severity of gastric mucosal damage induced by absolute ethanol.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Ulcer index (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracisternal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>18</td>
<td>10.2±2.5</td>
</tr>
<tr>
<td>bFGF</td>
<td>20</td>
<td>3.9±1.4 * p=0.029</td>
</tr>
<tr>
<td>Intraperitoneal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>4</td>
<td>11.6±2.8</td>
</tr>
<tr>
<td>bFGF</td>
<td>5</td>
<td>12.2±3.2</td>
</tr>
</tbody>
</table>

Rats received intracisternal injection of bFGF at a dose of 1 μg/10 μl or saline (control) and intragastric administration of absolute ethanol (1.0 ml). The severity of gastric mucosal damage was evaluated 1 h after treatment. * Compared with control.

Absolute ethanol-evoked gastric mucosal injury was significantly suppressed by intracisternal injection of bFGF as shown in Table 2.

Intraperitoneal administration of bFGF (1 μg) failed to reduce the severity of gastric lesions by indomethacin or absolute ethanol (Tables 1 and 2).

Previous studies have demonstrated that centrally but not peripherally administered bFGF in anti-secretory doses inhibit gastric lesion formation by intracisternal TRH or water-immersion restraint stress [6]. These two models are known to be inhibited by anti-secretory treatments [9–11]. This evidence suggests that the suppression of acid by central bFGF may contribute to the gastroprotective action of bFGF. However, the studies do not necessarily exclude the possibility that factors other than acid inhibition may be involved in the anti-ulcer action of central bFGF.

This study first shows that centrally administered bFGF reduced the severity of the gastric mucosal lesions by indomethacin, a cyclooxygenase inhibitor. These results further support our hypothesis that bFGF acts centrally to have a gastroprotective action. Since indomethacin-induced gastric damage is inhib-
ated by anti-secretory drugs [14], the reduction in the
development of gastric lesions by indomethacin in this
study may be due to the inhibitory effect of bFGF on
acid secretion. It is well known that prostaglandins
mediate some gastroprotective effects [15]. The dose
(30 mg/kg) of indomethacin used in this experiment
almost completely suppresses the biosynthesis of
prostaglandins in the gastric mucosa [16]. The present
result that centrally administered bFGF still exerted an
anti-ulcer action in indomethacin-treated rats led us to
speculate that the gastroprotective action of bFGF
may not be mediated by prostaglandins.

The major finding of this study was the reduction of
severity of ethanol-induced gastric mucosal injury by
centrally injected bFGF. Since the development of
ethanol-evoked gastric mucosal lesions is not sup-
pressed by anti-acid agents [12], this ulcer model is
acid-independent. These results suggest that bFGF
may act in the brain to have an anti-ulcer action
through a mechanism that does not depend upon acid
secretion. Together with our previous observations [6,
8], we suggest that the gastroprotective action of cen-
tral bFGF may be exerted not only by way of anti-acid
but also acid-independent mechanisms. We do not
know, at this moment, the precise mechanism that is
independent on gastric acid, but a change in gastric
mucosal blood flow might be involved in the mecha-
nism because ischemic change is known to be an im-
portant factor in ethanol-induced gastric mucosal le-
sions [17]. This speculation requires further investiga-
tions.

In summary, this study suggests that bFGF acts
centrally in the brain to have an anti-ulcer action
through acid-independent mechanisms.

REFERENCES

N, Ling N, and Guillemin R: A nonmitogenic pituitary
function of fibroblast growth factor: regulation of thy-
rrotropin and prolactin secretion. Proc Natl Acad Sci
USA 82: 5545–5549, 1985

2. Denton DA, Blair-West JR, McBurnie M, Weisinger RS,
Logan A, Gonzales AM, and Baird A: Central action of
basic fibroblast growth factor on ingestive behavior in
mice. Physiol Behav 57: 749–752, 1995

3. Li AJ, Oomura Y, Aou S, Sasaki K, Kimura H, and
Toyoama I: Fibroblast growth factor receptor-1 in the
lateral hypothalamic area regulates food intake. Exp
Neuroi 137: 318–323, 1996

4. Plata-Salaman CR: Food intake suppression by growth
factors and platelet peptides by direct action in the
central nervous system. Neurosci Lett 94: 161–166,
1988

5. Sasaki K, Oomura Y, Suzuki K, Muto T, Hanai K,
Toyoama I, Kimura H, and Yamaehara N: Effects of fib-
broblast growth factors and platelet-derived growth
factor on food intake in rats. Brain Res Bull 27: 327–
332, 1991

6. Okumura T, Uehara A, Kitamori S, Takasugi Y, and
Namiki M: Central basic fibroblast growth factor inhibits
gastric ulcer formation in rats. Biochem Biophys Res

7. Okumura T, Uehara A, Kitamori S, Watanabe Y,
Taniuchi Y, Tsui K, and Namiki M: Basic fibroblast
growth factor (bFGF) acts centrally in the brain to inhi-
bbit gastric emptying in rats. Neurosci Lett 137: 53–55,
1992

8. Okumura T, Uehara A, Tsui K, Taniuchi Y, Kitamori S,
Shibata Y, Okumura K, Takasugi Y, and Namiki M: Cen-
tral nervous system action of basic fibroblast growth
factor: inhibition of gastric acid and pepsin secretion.

9. Goto Y and Tache Y: Gastric erosions induced by in-
traluminal thyrotropin-releasing hormone (TRH) in

10. Nishikawa H, Takeca F, Kitagawa H, and Kokei H:
Roles of gastric acid secretion and motility in gastric
mucosal lesion formation induced by water-immersion
stress in rats. Scand J Gastroenterol 24 (Suppl 162):
11–14, 1989

11. Okumura T, Uehara A, Watanabe Y, Taniuchi Y, Kit-
amori S, and Namiki M: Site-specific formation of thy-
rrotropin-releasing hormone-induced gastric ulcers
through the vagal system. Scand J Gastroenterol 29:
226–231, 1994

12. Robert A, Nezamia JR, Lancaster C, and Hanchar AJ:
Cytoprotection by prostaglandins in rats. Prevention of
gastric necrosis produced by ethanol, HCl, NaOH, hy-
pertonic NaCl, and thermal injury. Gastroenterology 77:
433–443, 1979

13. Okumura T, Shoji E, Onodera S, and Kohgo Y: Suscep-
tibility to the development of gastric ulceration in
OLETF rats not expressing the CCK-A receptor gene.
Biochem Biophys Res Commun 224: 728–733, 1996

14. Ueki S, Takeuchi K, and Okabe S: Gastric motility is an
important factor in the pathogenesis of indomethacin-
induced gastric mucosal erosions in rats. Dig Dis Sci 33:
209–216, 1988

15. Whittle BJR: Temporal relationship between cyclooxy-
genase inhibition, as measured by prostaglandin biosynthesis, and the gastrointestinal damage induced
by indomethacin in rats. Gastroenterology 80: 94–98,
1981

prostaglandin E2 in the regulation of gastric acid secre-

17. Oates PJ and Hakkinen JP: Studies on the mechanism
of ethanol-induced gastric damage in rats. Gastroen-
terology 94: 10–21, 1988

233