Resting Pulmonary Ventilation and Dead Space Ventilation during the Menstrual Cycle

Nariko Takano

Department of School Health, Faculty of Education, Kanazawa University, Kanazawa, Ishikawa, 920 Japan

Summary By reanalyzing our previous study (Takano et al., 1981) of resting ventilation and P_{ACO_2} during the menstrual cycle of eight healthy women, we found that relative to the follicular phase, a 9.4% increase in V_A ($p<0.05$) and a 2.5 mmHg decrease in P_{ACO_2} ($p<0.001$) occurring during the luteal phase, both of which have been reported previously, were attributable mostly to a decrease in V_D ($-7.2\%, 0.05<p<0.1$) but not to an increase in V_E ($+1.9\%, N.S.$), the latter two changes producing an 8.7% decrease in V_D/V_T ($p<0.01$).

Key Words: menstrual cycle, pulmonary ventilation, physiological dead space.

It is known that progesterone and some progestational agents cause hyper-ventilation and a fall in P_{ACO_2} (Skatrud et al., 1978). Due to this effect, physiologically, normal adult women exhibit a 2–8 mmHg drop in P_{ACO_2} during the luteal phase of the menstrual cycle (England and Farhi, 1976) and further drops during pregnancy (Lucius et al., 1970; Pernoll et al., 1975). Since progesterone has little effect on CO$_2$ production (Tyler, 1960; Skatrud et al., 1980; Takano et al., 1981), the decrease in P_{ACO_2} during progesterone stimulation was ascribed to an increase in V_A (Takano et al., 1981). During pregnancy (Pernoll et al., 1975) and administration of progesterone (Cullen et al., 1959; Tyler, 1960; Skatrud et al., 1978, 1980), the increase in V_A has been attributed to a greater increase in V_E relative to the concomitant increase in physiological dead space ventilation (V_D). To our knowledge, however, little has been reported on V_E during the menstrual cycle, although the P_{ACO_2} has been much studied. Heerhaber (1948) observed in one normal woman that P_{ACO_2} continuously decreased during the luteal phase while V_E did not increase steadily. Very recently, Schoene et al. (1981) reported that twelve menstruating women showed a 24% increase in V_E and a 2.3 mmHg decrease in P_{ACO_2} during the luteal phase, compared with those occurring during the follicular phase. In our previous study (Takano...
et al., 1981), we paid much attention to the version of VA of our experimental results, in order to assess the functional characteristics of the feedback loop of P_{ACO_2} control operating during the menstrual cycle. We observed that a 9.4% increase in VA and a 2.5 mmHg decrease in P_{ACO_2} occurred during the luteal phase of eight menstruating women.

Now, on reviewing the results for VE obtained in the course of our previous study (TAKANO et al., 1981), we became aware that the increase in VE observed during the luteal phase of our subjects was too small to explain the 9.4% increase in VA, unless VD decreased during the luteal phase. We now report the results for VE and VD during the menstrual cycle, using the data we obtained in our previous study.

Experimental procedures are given in detail in our previous study (TAKANO et al., 1981). Eight subjects, ages 22–42, were studied. The study was repeated on 4–10 different days of two menstrual cycles in each subject, once a day at the same time of day. The time scale of the menstrual cycle was normalized to 28 days based on the record of the basal oral temperature measurement.

During the study, the subject lay in a half-reclining position. After 30 min rest, oral temperature ($Toral$) was measured and a respiratory mask (mask dead space: 60 ml) was then applied. In the steady state, 5-min measurement of minute ventilation (VE), tidal volume (VT), and respiratory frequency (f) was made by means of a Tissot spirometer, and 5-min measurement of end-tidal P_{CO_2}, (P_{ACO_2}), by means of an infrared CO$_2$ analyzer (Beckman LB-1) calibrated with two standard gas mixtures previously analyzed using a Scholander gas analyzer. The data were taken every minute and then averaged. Then, mixed expired gas was collected for 10 min, the CO$_2$ content ($FECO_2$) being measured by a Scholander gas analyzer. Physiological dead space (VD) was calculated from VT, P_{ACO_2}, and $FECO_2$, using the Bohr equation. Ventilatory volumes were expressed in BTPS.

Only the data obtained between day 3 and day 12 of each follicular and luteal phase were used for statistical analysis. Because of unequal quantities of data obtained between the two phases in each subject, we considered that the mean value for each phase in each subject and hence the difference between the two phases for each subject could not be estimated properly. We estimated the mean value of the whole experimental group for each follicular and luteal phase, and subsequently, the difference between the two phases was tested by the Student’s t-test for unpaired comparisons, as described in our previous study (TAKANO et al., 1981). The mean value of a given variable (X) of the experimental group was calculated for each phase through the following steps: (1) a ratio between the measured value on day n of each phase and the grand mean (X_n/X) for each subject, (2) the averaged value of the ratios obtained in all subjects for each follicular (F) and luteal (L) phase (X_n/X)F and (X_n/X)L, respectively), (3) the grand mean for the experimental group (\bar{X}/N, in which N=number of subjects), and (4) the mean value of the experimental group for each follicular and luteal phase as ($\sum X/N$)×(X_n/X)F

Japanese Journal of Physiology
Table 1. Ventilatory measurement during each follicular and luteal phase.

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Follicular</th>
<th>Luteal</th>
<th>Diff.</th>
<th>% Change</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toral* (°C)</td>
<td>36.6 ± 0.05</td>
<td>36.9 ± 0.03</td>
<td>0.3</td>
<td>—</td>
<td>p < 0.001</td>
</tr>
<tr>
<td>$P_{A_{CO_2}}$* (mmHg)</td>
<td>36.8 ± 0.52</td>
<td>34.3 ± 0.36</td>
<td>-2.5</td>
<td>—</td>
<td>p < 0.001</td>
</tr>
<tr>
<td>V_E (liters · min⁻¹ · m⁻²)</td>
<td>4.28 ± 0.085</td>
<td>4.36 ± 0.087</td>
<td>0.08</td>
<td>1.9</td>
<td>N.S.</td>
</tr>
<tr>
<td>V_D** (liters · min⁻¹ · m⁻²)</td>
<td>1.95 ± 0.055</td>
<td>1.81 ± 0.055</td>
<td>-0.14</td>
<td>-7.2</td>
<td>N.S.</td>
</tr>
<tr>
<td>V_A* (liters · min⁻¹ · m⁻²)</td>
<td>2.33 ± 0.055</td>
<td>2.55 ± 0.069</td>
<td>0.22</td>
<td>9.4</td>
<td>p < 0.05</td>
</tr>
<tr>
<td>f (breaths · min⁻¹)</td>
<td>16.2 ± 0.25</td>
<td>16.3 ± 0.26</td>
<td>0.1</td>
<td>—</td>
<td>N.S.</td>
</tr>
<tr>
<td>V_D/V_T</td>
<td>0.46 ± 0.009</td>
<td>0.42 ± 0.009</td>
<td>-0.04</td>
<td>-8.7</td>
<td>p < 0.01</td>
</tr>
</tbody>
</table>

All values are mean ± S.E. Body surface area (mean ± S.D.) of the subjects was 1.48 ± 0.061 m².

* Presented in our previous study (TAKANO et al., 1981) and shown here for reference.

** Includes dead space in respiratory mask.

and $(\sum X_i/N) \times (X_0/\bar{X})_t$, respectively.

The experimental results are summarized in Table 1. The subjects exhibited normal biphasic fluctuations in Toral and $P_{A_{CO_2}}$ during the menstrual cycle, indicating that they had been subjected to normal periodic progesterone stimulation. It was noted that V_E did not significantly increase during the luteal phase, while $P_{A_{CO_2}}$ decreased by 2.5 mmHg. V_D showed a decrease of 7.2% during the luteal phase but the magnitude thereof was not statistically significant (0.05 < p < 0.1). The slight increase in V_E (+1.9%) and the small decrease in V_D (−7.2%) resulted in a significant decrease in V_D/V_T of 8.7%.

The dead-space volume of the respiratory mask used in the present study turned out to be 35% of the V_D value, which resulted in the greater V_D/V_T ratio than that in women studied using mouthpieces (PERNOLL et al., 1975). If it is assumed that the anatomical and alveolar dead spaces were not affected by addition of the extra-corporeal dead space, we can estimate “real V_D” and “real V_T” by subtracting the mask dead space from the actually measured V_D and V_T, respectively. The “real V_D” (liters · min⁻¹ · m⁻²) was 1.29 for the follicular phase and 1.15 for the luteal phase, the % change being −10.9% but not significant (0.05 < p < 0.1). On the other hand, the “real V_D/V_T” ratio was 0.36 for the follicular phase and 0.31 for the luteal phase, the difference being significant (p < 0.01).

It has been reported that in normal males and patients with hypercapnia, progesterone administration results in 10–20% increases in V_E associated either with 10–30% increases in V_D (CULLEN et al., 1959; TYLER, 1960; SKATRUD et al., 1978, 1980) or with no change in V_D (KRYGER et al., 1978). As a result of this, the V_D/V_T either decreased by 3–15% (CULLEN et al., 1959; TYLER, 1960; KRYGER et al., 1978) or remained unchanged (SKATRUD et al., 1978, 1980). PERNOLL et al. (1975) have shown that during pregnancy in which progesterone stimulation and an increase in V_{CO_2} exist concomitantly, both V_E and V_D increase and V_D/V_T decrease.
crease. Thus, in the cases of pregnancy and administration of progesterone, the relatively large increases in \dot{V}_A (+10-20%) seem to be due to sufficiently large increases in \dot{V}_E in spite of concomitantly increasing \dot{V}_D. On the other hand, in the case of the luteal phase in our subjects, the relatively small increase in \dot{V}_A (+9.4%) appears to be attributable mostly to the decrease in \dot{V}_D with little change of \dot{V}_E, resulting in a significant decrease in \dot{V}_D/\dot{V}_T. A significant change in respiratory frequency was not seen after the ovulation in our subjects (Table 1), this result being in agreement with those obtained after the administration of progesterone (KRYGER et al., 1978; SKATRUD et al., 1978, 1980).

We cannot yet explain the discrepancies between our findings and those of others. Possible reasons are as follows. (1) The higher the level of blood progesterone, the greater the increase in \dot{V}_E and \dot{V}_T. The levels of blood progesterone during progesterone administration were double during the luteal phase (SKATRUD et al., 1978, 1980) and those during pregnancy quadrupled during the luteal phase (GOLDMAN and ZARROW, 1973; TAGATZ and GURPIDE, 1973). However, SCHONE et al. (1981) have cast doubts on this possibility. (2) A greater increase in \dot{V}_T tends to be accompanied by a greater increase in \dot{V}_D (BOUHUYS, 1964). (3) Progesterone possibly decreases the lung compliance (ITO and AVIADO, 1968; FARIDY, 1981). This effect might result in decreases in FRC (FARIDY, 1981) and the \dot{V}_A/\dot{Q} ratio, the former leading to a decrease in anatomical dead space and the latter, to a decrease in alveolar dead space (BOUHUYS, 1964). However, there has been no study made as to whether FRC and/or the \dot{V}_A/\dot{Q} ratio decrease during the luteal phase. (4) The above two opposing effects of (2) and (3) on \dot{V}_D may offset each other. That is, when the magnitude of increase in \dot{V}_T in response to increased progesterone is smaller, the net increase in \dot{V}_D will be smaller, and in some cases, it will become negative. In the case of our subjects with no significant increases in \dot{V}_T during the luteal phase, their \dot{V}_D values are likely to decrease due to this sequence. In our recent study on a further five menstruating subjects (TAKANO, 1981), we again observed that there was no significant increase in \dot{V}_E (+0.4%) but a significant decrease in P_{ACO_2} (−3.2 mmHg) during the luteal phase. We cannot explain the disagreement between Schoene’s subjects (SCHOENE et al., 1981) and ours in regard to the \dot{V}_E response during the luteal phase. Data on the \dot{V}_D of Schoene’s subjects have not yet become available. It is not known whether racial differences play a role in the sensitivity and availability of progesterone receptor sites.

The author thanks Dr. J. N. Hunt, Baylor College of Medicine, Houston, Texas, U.S.A., for the critical reading of this manuscript.

REFERENCES

Japanese Journal of Physiology
VE AND VD DURING THE MENSTRUAL CYCLE

