シンポジウム：慢性疼痛の基礎と臨床

痛みによる不快情動生成の神経機構

南 雅文*

抄録：痛みは、変容刺激が加わった場合とその強さの認知にかかわる感覚的成分と変容刺激受容に伴う不安、嫌悪、恐怖などの負の情動（以下、不快情動）の生起にかかわる情動的成分からなる。痛みによる不快情動発生における扁桃体の役割を検討したところ、体性痛に関する情報は基底外側核（BLA）を経て中心核（CeA）に入った後、一部で、内臓痛に関する情報はBLAを介さずCeAに入った後、不快情動を生成する可能性が示された。この体性痛による不快情動発生には、BLA内グルタミン酸神経情報伝達が重要であること、ノルアドレナリンの機能を介した神経情報伝達亢進にまた痛みによる不快情動発生に重要であることを明らかにした。

Key words: 扁桃体、分界条核、グルタミン酸、ノルアドレナリン、疼痛

はじめに

痛みは、変容刺激が加わった場合とその強さの認知にかかわる感覚的側面（sensory component）と変容刺激の受容に伴う不安、嫌悪、恐怖などの負の情動（以下、不快情動）の生起にかかわる情動的側面（emotional component）からなる複雑な体験であるといえる。これまでに痛みの感覚的側面に関しては精力的に研究がなされ、その神経機構もだいに明らかになりつつあるが、情動的側面に関する研究はいまだ長く、その神経機構もだいに明らかになりつつあるが、情動的側面に関する研究はいまだ長く、その神経機構もだいに明らかになりつつあるが、情動的側面に関する研究はいまだ長く、その神経機構もだいに明らかになりつつあるが、情動的側面に関する研究はいまだ長く、その神経機構もだいに明らかになりつつあるが、情動的側面に関する研究はいまだ長く、その神経機構もだいに明らかになりつつあるが、情動的側面に関する研究はいまだ長く、その神経機構もだいに明らかになりつつあるが、情動的側面に関する研究はいまだ長く、その神経機構もだいに明らかになりつつあるが、情動的側面に関する研究はいまだ長く、その神経機構もだいに明らかになりつつあるが、情動的側面に関する研究はいまだ長く、その神経機構もだいに明らかになりつつあるが、情動的側面に関する研究はいまだ長く、その神経機構もだいに明らかになりつつあるが、情動的側面に関する研究はいまだ長く、その神経機構もだいに明らかになりつつあるが、情動的側面に関する研究はいまだ長く、その神経機構もだいに明ら

*北海道大学大学院薬学研究院医薬学科薬学分野薬理学研究室（連絡先：南 雅文，〒060-0812北海道札幌市北区北 12 条西 6 丁目）
酸神経情報伝達あるいはノルアドレナリン神経情報伝達の亢進が、痛みによる不快情動生成に重要な役割を果たしていることが明らかとなっている。本稿では、筆者の研究結果を中心に、痛みによる不快情動生成の神経機構について最近の知見を紹介する。

痛みによる不快情動生成における扁桃体基底外側核および中心核の役割

痛みにより惹起される不快情動を定量的に評価する方法として、筆者らは、条件づけ場所嫌悪性試験（Conditioned Place Aversion [CPA] test；CPA test）を用いている。CPA test には、Fig. 1A のような壁の色と床の材質が異なった 2つのボックスからなり、ラットがおのおののボックスにいる時間の長さを計測する。

Fig. 1 条件づけ場所嫌悪性試験
A: 条件づけ場所嫌悪性試験のスキューム（詳細は本文参照）。
B: ホルマリン後肢皮下投与による場所嫌悪性反応の惹起。コントロール刺激として生理食塩水の後肢皮下投与を行い、痛み刺激として反対側へのホルマリン後肢皮下投与を行った（Saline + Formalin 群）。対照実験として両側ともに生理食塩水を投与した群（Saline + Saline 群）では条件づけ前後（Pre および Test）で pain-paired side での滞在時間の変化がみられなかった。一方、一侧後肢にホルマリンを投与した後に pain-paired side に固定した群（Saline + Formalin 群）では、条件づけにて pain-paired side での滞在時間が有意に(*) (p < 0.01) 短縮された。
C: Pre での pain-paired side 滞在時間から Test での pain-paired side 滞在時間を引きえた CPA スコアを示した（*p < 0.05）。CPA スコアが大きいほど強い場所嫌悪性反応（＝不快情動）が惹起されたことを示す。

文献 2）より一部改変
不快動生成の場所観察（A）は、基底外側核（BLA）あるいは中心核（CeA）いずれの破壊によっても消失した、興奮性神経毒のわかりにvehicleを投与しただけの偽手術群では場所嫌悪反応の抑制はみられなかった、一方、酢酸腹腔内投与による場所嫌悪反応（B）は、中心核（CeA）の破壊によって消失したが基底外側核（BLA）の破壊では影響を受けなかった。

文献2）より一部改変
痛みによる不快情動生成における扁桃体基底外側核内グルタミン酸神経情報伝達の役割とオピオイド受容体を介した制御機構

体性痛による不快情動生成にかかわる神経情報伝達機構を明らかにするため、まず、基底外側核内グルタミン酸神経情報伝達の役割について検討を行った。In vivo マイクロダイアリシス法を用いた実験においてホルマリン後肢皮下投与により基底外側核内グルタミン酸遊離量の増加が認められることから、基底外側核内末梢を有するグルタミン酸作動性神経が体性痛により活性化されることが明らかとなった。そこで、ホルマリン後肢皮下投与により惹起される場所嫌悪反応に対する各種グルタミン酸受容体拮抗薬の基底外側核内局所投与の効果を検討した。NMDA 受容体拮抗薬である MK801 を 10nmol/ side の用量で両側基底外側核内に投与することにより場所嫌悪反応はほぼ完全に抑制されたが、AMPA/カイニン酸受容体拮抗薬である CNQX (30nmol/side) や代謝型グルタミン酸受容体拮抗薬である AP3 (30nmol/side) を同部位に投与しても場所嫌悪反応に対して有意な影響はみられなかった。これらの結果より、扁桃体基底外側核における NMDA 受容体を介したグルタミン酸神経情報伝達の亢進が、体性痛による不快情動生成に重要な役割を果たしていることが示唆された。

次に、ホルマリン後肢皮下投与により惹起されるグルタミン酸遊離量増加および場所嫌悪反応に対する基底外側核内ロヒトレリン局所投与の効果を検討した。ホルマリン後肢皮下投与によ
るグルタミン酸遊離量増加はマイクロダイアリシス灌流液中にロヒトレリン 100μM を加えることにより有意に抑制された。さらに、ホルマリンにより惹起される場所嫌悪反応は、ホルマリン皮下投与の 5 分前にロヒトレリン (10μg/side) を両側基底外側核内に投与することによりほぼ完全に抑制された。また、この抑制作用は naloxone の同時投与により拮抗されたことからオピオイド受容体を介した作用であると考えられる。一方、感觉的側面の指標である侵害受容反応は、基底外側核内ロヒトレリン投与によりほとんど抑制されなかったことから、基底外側核内に局所投与したロヒトレリンによる場所嫌悪反応の抑制は、痛みの情動的側面に特異的な作用機序によるものであると考えられる。

以上より、痛みによる不快情動生成における扁桃体基底外側核グルタミン酸神経情報伝達の役割とオピオイド受容体を介した制御機構は Fig.4 のように考えられる。すなわち、ホルマリンによる持続的な疼痛により基底外側核でのグルタミン酸遊離が増加し、NMDA 受容体を介した
した神経情報伝達が亢進することにより場所嫌悪反応、すなわち、不快情動が惹起される。基底外側核に投与されたモルヒネは、グルタミン酸作動性神経細胞へのシナプス前伝導作用を示すだけでなく、酸遊離を抑制することにより不快情動を抑制している可能性が考えられる。

痛みによる不快情動生成における分界条床核の役割

分界条床核は、扁桃体中心核と双方向の密な神経連絡を有しており、無名質などの脳領域とともに“extended amygdala”と呼ばれる構造をつくれる。分界条床核もまた、不安や恐怖などの不快情動生成に重要な役割を果たしていることから報告されていることから、痛みによる不快情動生成における分界条床核の役割を調べるため、興奮性神経細胞の局所電位注人と偏側分界条床核を破壊したラットを対象として実験を行った。ホルマリン後皮下投与および酢酸腹腔内投与のいずれにより惹起される場所嫌悪反応も分界条床核の破壊により消失したことから、痛みによる不快情動生成に分界条床核が重要な役割を果たしていることが示された（Fig. 5）。

Fig. 5 ホルマリン後肢皮下投与および酢酸腹腔内投与により惹起される場所嫌悪反応に対する分界条床核破壊の効果

場所嫌悪反応を CPA スコアにより表す。ホルマリン後肢皮下投与および酢酸腹腔内投与により惹起される場所嫌悪反応は、同様に、分界条床核の破壊によって消失した。*p<0.05, **p<0.01

文献4より一部改変

痛みによる不快情動生成における分界条床核内ノルアドレナリン神経情報伝達の役割

分界条床核の腹側領域は脳幹の A1/A2 領域からノルアドレナリン神経の密な投射を受けており、それが報告されている。そこで、痛みによる不快情動生成における腹側分界条床核内ノルアドレナリン神経情報伝達の役割について検討を行った。ホルマリン後肢皮下投与および酢酸腹腔内投与を行い、腹側分界条床核内における細胞外ノルアドレナリン量の変化を In vivo マイクロダイアリシス法により測定したところ、細胞外ノルアドレナリン量は痛み刺激により有意に増加した。そこで、ホルマリン後肢皮下投与の 10 分前に腹側分界条床核内に β アドレナリン受容体拮抗薬 Timolol (1, 10nmol/side) を投与したところ、場所嫌悪反応は用量依存的に抑制された（Fig. 6）。

Fig. 6 ホルマリン後肢皮下投与により惹起される場所嫌悪反応に対する腹側分界条床核内βアドレナリン受容体拮抗薬投与の効果

場所嫌悪反応を CPA スコアにより表す。ホルマリン後肢皮下投与により惹起される場所嫌悪反応は、腹側分界条床核への β アドレナリン受容体拮抗薬 Timolol の投与によって用量依存的に抑制された。

文献5より一部改変

Vol. 49 No. 8, 2009 | 心身医 881
一方、痛みの感覚的側面の指標である侵害受容行動は腹側分界条床核内 Timolol 投与の影響を受けなかった。痛み刺激のかわりに β アドレナリン受容体作動薬である isoproterenol（3, 10, 30nmol/side）の腹側分界条床核内投与により条件づけを行ったところ、isoproterenol は用量依存的に場所嫌悪反応を惹起した。さらに、β 受容体の下流に存在する cAMP-プロテインキナーゼ A（PKA）系の関与を検討するために PKA 阻害薬である Rp-cAMPS の効果を検討したところ、ホルマリン後肢皮下投与により惹起される場所嫌悪反応は、腹側分界条床核への Rp-cAMPS 投与により用量依存的に抑制された。これらの結果は、痛み刺激により腹側分界条床核内でノルアドレナリン遊離が促進され、このノルアドレナリンによる β 受容体を介した cAMP-PKA 系の亢進が痛みによる不快情動生成に重要な役割を果たしていることを示している（Fig. 7）。

痛みによる不快情動生成における
前帯状回の役割

扁桃体およびその関連脳領域に加え、痛みによる不快情動生成に関与するとして注目されている脳領域に前帯状回がある。Johansen らは、興奮性神経毒による前帯状回の破壊により、ホルマリン後肢皮下投与により惹起される痛みによる不快情動生成が抑制されることを、条件づけ場所嫌悪性試験を用いて明らかにしている6）。この場合にも、痛みの感覚的側面の指標である侵害受容行動は影響を受けない。さらに彼らは、前帯状回への非選択的グルタミン酸受容体拮抗薬投与によりホルマリン後肢皮下投与で惹起される場所嫌悪反応が抑制されること、痛み刺激のかわりに前帯状回へのグルタミン酸受容体作動薬投与による条件づけを行うことにより場所嫌悪反応が惹起されることを明らかにし、前帯状回でのグルタミン酸神経情報伝達の亢進が、体性痛による不快情動生成に重要な役割を果たしていることを示した。さらに、Lei らによって、ホルマリン後肢皮下投与により惹起される場所嫌悪反応が、NMDA 受容体拮抗薬である AP5 の前帯状回内投与により抑制されるが、AMPA/カイニン酸受容体拮抗薬である DNQX では抑制されないことが報告され8）。前帯状回においても、扁桃体と同様に、NMDA 受容体を介したグルタミン酸神経情報伝達の亢進が、痛みによる不快情動生成に重要であることが示された。

おわりに

痛みにより惹起される不安、嫌悪、恐怖など
の不快情動は，生体警告系としての痛みの生理的役割にとって重要である。しかしながら，痛みが長期間持続する慢性疼痛では，これらの不快情動は，QOLを著しく低下させるだけでなく，精神疾患や行動障害の引き金ともなり，また，そのような精神状態が痛みをさらに悪化させるという悪循環をも生じさせ，「身（からだ）」だけでなく「心（ここころ）」を苦しめる，不安，嫌悪，恐怖，抑うつなどの痛みに伴う不快情動生成のメカニズムを明らかにし，「身」と「心」の両方を苦痛から解放することが，これらの疼痛治療に求められる。

文献
Abstract

Neuronal Mechanisms for Pain–induced Aversion

Masabumi Minami, PhD*

*Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University
(Mailing Address: Masabumi Minami, Nishi 6, Kita 12, Kita-ku, Sapporo-shi, Hokkaido 060–0812, Japan)

Background: Pain contains sensory discriminative and negative affective components. Although the neural systems responsible for the sensory component of pain have been studied extensively, the neural basis of the affective component is not well understood. We examined the neural circuits and mechanisms underlying the negative affective component of pain using a conditioned place paradigm.

Methods: Male Sprague–Dawley rats were used for all experiments under the approval of the Institutional Animal Care and Use Committee. Pain–induced aversion was assessed by a conditioned place aversion (CPA) test. Glutamate and noradrenaline releases within the basolateral amygdaloid nucleus (BLA) and bed nucleus of the stria terminalis (BNST), respectively, were examined by using an in vivo microdialysis technique.

Results: Excitotoxic lesions of the BLA abolished intraplantar formalin–induced CPA (F–CPA), but not intraperitoneal acetic acid–induced CPA (A–CPA). On the other hand, excitotoxic lesions of the central amygdaloid nucleus (CeA) abolished both F–CPA and A–CPA. These findings suggest that the BLA and CeA are differently involved in somatic and visceral pain–induced aversion. Next, we examined the role of glutamatergic transmission within the BLA in F–CPA. Microinjection of MK–801 into the bilateral BLA 5 min before intraplantar injection of formalin dose–dependently attenuated F–CPA without affecting nociceptive behaviors. On the contrary, microinjection of neither CNQX nor AP–3 showed any significant effect on F–CPA. In vivo microdialysis experiments revealed that intraplantar injection of formalin induced an increase in the extracellular glutamate level within the BLA. This increase in glutamate was suppressed by morphine perfusion via the microdialysis probe. Moreover, intra–BLA injection of morphine 5 min before formalin injection attenuated F–CPA without affecting nociceptive behaviors. Finally, we examined the role of noradrenergic transmission within the BNST, especially the ventral part of the BNST (vBNST), in F–CPA. In vivo microdialysis showed that extracellular noradrenaline levels within the vBNST were significantly increased by intraplantar formalin injection. Using the CPA test, we found that intra–vBNST injection of timolol, a β–adrenoceptor antagonist, dose–dependently attenuated F–CPA without reducing nociceptive behaviors. Intra–vBNST injection of isoproterenol, a β–adrenoceptor agonist, dose–dependently produced CPA even in the absence of noxious stimulation. This isoproterenol–induced CPA was reversed by the co–injection of Rp–cyclic adenosine monophosphorothioate (Rp–cAMPS), a selective PKA inhibitor. Furthermore, intra–vBNST injection of Rp–cAMPS dose–dependently attenuated the F–CPA.

Conclusion: These results suggest that glutamatergic transmission via NMDA receptors within the BLA plays a crucial role in the pain–induced aversion, and that in addition to the well–characterized effects on the sensory component of pain, morphine also influences the affective component of pain through an inhibitory effect on intra–BLA glutamatergic transmission. Furthermore, it was demonstrated that PKA activation within the vBNST via the enhancement of β–adrenergic transmission is important for the pain–induced aversion.

Key words: amygdala, bed nucleus of the stria terminalis, glutamate, noradrenaline, pain